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 CONCERNING THE GENERAL VERTICALLY AVERAGED HYDRODYNAMIC EQUATIONS
WITH RESPECT TO BASIC STORM SURGE EQUATIONS

: Heinz G, Fortak .
Naxional Hurricane Research Project, Miami, Fla.
[Manuscript received July 31, 1961]

ABSTRACT

The three-dimensional hydrodynamic equations for an inhomogeneous .
fluid are used to derive a system of equations for the study of storm
surges in an exceptionally complete form. Smoothing over a short
time interval leads to the introduction of small-scale turbulent fric-
tion terms but guarantees s mathematically defined free surface of
continuous slope. However, many of the characteristics of the wind-
driven surface waves are retained.

Vertical averaging permits the introduction of the kinematic
boundary conditions including the mass exchange at the surface. This
also leads to the introduction of exact three-dimensional dynamic
boundary conditions which contain all components of the turbulent
stress tensor which act on the surface. Many terms which are usually
neglected in linear theories cancel each other when the complete non-
linear equations are integrated in the vertical.

A second process of time averaging is used to filter all sur-
face waves below a certain wave period. This leads to an expression
for the effect of the surface waves on sea level as averaged over a
period of several minutes.

The final Equations for the mean water transport contain the
following effects which may be important in the development of
storm surges: a moving atmospheric pressure field; moving field
of tangential wind stresses; the wave set-up; horizontal and verti-
cal density gradients in the free ocean or near the coast; non-
hydrostatic terms which can be expressed partly by the kinetic



energy of the surface particles, and therefore by means of the
kinematic boundary condition in terms of the equation of the surface
itself, and additional surface stresses connected with the total
wind stress at the surface and the total stresses at the bottom in
the case in which the slope of the bottom is not small; and the
precipitation-evaporation effect.

From this point it is possible to derive most basic equations
used in storm surge investigations-and in many related oceanographic
problems in a manner which shows the approximations involved. The
separation of a basic current, such as that which may arise from
the astronomical tides or the generall circulation of the ocean,
from the complete equations shows that the storm surge canmot, in
general, be treated by perturbation methods.

The equations are derived in vectorial form to permit the
ready adoption of any special coordinate system suitable to a speci-
fic problem. Some potentially useful but unusual coordinate sys-
tems are discussed. Finally, vorticity and divergence equations
are derived from the general equations for both the mean velocity
and the mean mass transport. Several frequently used systems of
equations can be derived from these expressions in a manner which
shows the terms that are commonly neglected in the simplified
theories.



1. INTRODUCTION

The basic equations used in most theoretical storm surge research as in
most other modern research in dynamic oceanography are the vertically inte-
grated hydrodynamic equations. This facilitates the introduction of the
boundary conditions applicable to the vertical coord.inate, and it is these
boundary conditions that are dominant in most problems in physical oceénog- -

raphy. . o i

This dominance of the upper and lower boundaries in oceanography is in
contrast to meteorology where only the lower boundary is present and even this
has relatively little effect on the character of the large-scale motions.

Thus one of the essential differences between problems of dynamic oceanography
and those of dynamic meteorology is given by the differences in the boundary
conditions. The two boundary value problems of oceanography are, in principle,
much more complicated than the ome boundary value problem of meteorology.

The vertical integration of the hydrodynamic equations, usual in oceanog-
ra.phy, transforms the difficulties of solving the three-dimensional boundery
value problem into difficulties regarding the unknown stress and pressure at
the bottom of the sea. The disadvantage of introducing these unknown func-
tions is compensated for by several important advantages. In fact, satisfac-
tory solutions of several oceanographic problems have been obtained by com-
bining the vertically integrated equations with the hydrostatic approximation
in rather simple expressions for the bottom stress, and even in fully linesr-
ized models (Sverdrup [31,32], Stommel [30), Hidaka (15, 16, 17], Mk [21],
and others). These linearized models s which are much simpler than those for
atmospheric motions, are applicable to many problems involving the oceanic
currents.

The same simplified form of the basic equations has been used success-
fully in severgl storm surge research problems. However, there are other
problems in storm surge prediction that are not solved from a theoretical
point of view. There are many situations in which the quantitative predic-
tions of tide height during a storm cannot be made with satisfactory accuracy.
This is true, partly because the storm surge prediction requires a priori an
accurate detailed prediction of the meteorological conditions during the storm
(not presently available) » and partly because the mathematical problem is more
complicated than one might expect.

There are several difficulties associated with the migratory boundary
during the inundation phase and non-linear interaction between the surge and
the astronomical current (Doodson [7, 8], and Proudmen [23,24]), and other
non-linear terms which can generally be neglected in the deep ocean but which
are significant in the vicinity of the coast. These problems cannot be solved
by a simple addition of particular solutions obtained from a linear theory.

Attempts have been made to incorporate non-linear effects by using an ex-
tension of the equations for the first approximation of the non-linear shallow
water wave theory (Freeman [10]) and the method of wave derivatives (Freeman
and Baer [11, 13]). This latter method -permits some investigation of the
interactions between the surge and the basic currents.

.0




In this paper the problem will be formulated anew on the basis of the
general hydrodynamic equations. All approximations and assumptions will be
deferred as long as possible with the hope of obtaining a better understand-
ing of the effects of the terms which may have to be neglected before a quan-
titative answer to the problem as obtained. In many special cases the approx-
imations which must ultimately be introduced could be introduced at the very
beginning with a resultant simplification of the equations. However, this is

' not always true, and it is inefficient as each derivation with special

assumptions must be repeated for each special problem. Special cases can be
obtained directly from a general development of the mass transport equation
by the introduction of suitable assumptions in the final equation. Moreover,
when the derivation is carried out in this way, one has a better evaluation
of the validity of the special equation being used.

The mass transport equations derived here are believed to contain, as
special cases, all of the basic equations used so far in connection with the
vertically integrated equations in oceanography and many of those used in
meteorology. The form of these equations is given in a manner which permits
physical interpretation and which can be handled formally in a mathematical
sense. The form of the equations should suggest the introduction of new ap-
proximations to obtain a more complete formulation of the practical problems.

2. BASIC EQUATIONS OF MOTION

2.1 Symbols and definitions

b =2wcos ¢
£=2wsin @
¢ = co-latitude

—
-
Sumad o
-
i~
.o

Orthogonal system of unit vectors

.. ‘g =€h + kk : Unit tensor

2‘,@ h= 11 + ]] : Two-dimensional unit tensor

¢ = g ] + -fé:k : Angular velocity vector of the earth rotation
V= vh + ?Tz | ¢ Three-dimensional nabla-operator |
V=Vh +kv : Three-dimensional velocity vector

Vh = ivx +] v : Horizontal velocity vecf.or

Py, P : Density and pressure

@.( 8) ) & : Gravity poten'tia.l and gravity acceler‘ationv

&P, (M(x,y,t) : Astronomlcal tidal potential and equilibrium tide

elevation

c®
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n(x,y,t) : Mean free surface elevation after first time averaging.
F : Stress tensor of molecular friction
visc
oV : Linear momentum
pVV : Momentum transfer tensor .
K=%’fTAdt : First time average of A
A' = A - A
:]-'— f pAdt : First weighted time average of A *
p T Yo
An-n-% '
A = 0; pA" =0
F-- oV'V" : Reynolds-stress tensor (internal turbulent friction )
The following relations and notations are also useful:
V. | -p€)=-9p (1)
dV _ oV ,l vv]
el A (2)
. E—— 5
Fe(-ovrvm) = (-ovw) + (-ovik=F + & (3)
where |

F = -0V

h i( - pve V) + j (- Ve V') +k(-pv;Vg)

A m;c,hﬁu ]n’y,h+ kkﬂz-,h. (1)
the "horizontal" component of Sr;' and
F =(ovvik = Tk (5)

the vertical components of 3:

2.2 Time averaged equations for linear momentum

The complete equations for linear momentum describing the turbulent mo-
tion of the fluid, and for conservation of mass are given by Eliassen and
Kleinschmidt [9]:

BDX_ + V- lpVV'+ 2WxpV = OV‘Q l, q:)(Ml +V l—jg+?’3‘bcl )

A}



X 4+V. V=0 (7)

The surface of the sea, when under the influence of a severe storm, can-
not be described exactly by a single-valued function of position and time. A
turbulent zone in which the air contains much spray and the water many air
bubbles exists between the two fluids. A mathematically defined smooth sur-
face, necessary for the vertical integration, which will be performed later,
is obtained by taking a time average over a short period of the order of a
fraction of a secornd to a few seconds. This averaging process imtroduces
additional terms representing small-scale turbulent friction.

Using the definitions of ordinary and weighted mean given in 2.1 s aver-
aging of equations (6) and (7) leads to ' :

‘a'g{‘{ +Ve l ;{\7{}] + 26dx Ei‘f = - SV[ Q(g)"' @('T)’ +Ve I';?"’V"V“*'zisc
(8)
§+v.’;‘\/}‘]=o, (9)

If the horizontal x, y plane is chosen to coincide with the surface Q( g)
= 0 and the vertical unit vector K is directed upwards, @( 8)_ gz and V@( 8)
gk. The tidal potential may be expressed as the equilibrium water eleva-
tion, n(T) (Defant [6]). By using these conventions and neglecting the molec-

wlar viscosity which is generally several orders of magnitude less than the
turbulent viscosity, (8) can be written in the form

A —
%Y. v. ls?r?r }+ 200:5V = - gs-lk- th(T), £V l- Bf-pv"v"(llo)

It is assumed that this averaging process guarantees a surface which is a
é;ngle-valued function of time and position and which has finite slope, say

;I. ='.;l. (x:Y:t)-

Applying these equations to the motions of incompressible but possibly
inhomogeneous water, as can be assumed in the case of storm surge calcula-
tions, the condition for incompressibility is

dp . o -
. £+tV-Vo=0 |
and with this condition equation (9) leads to the well-known equation of con-

tinuity for incompressible fluids . |
v-¥-o0 ()

We use, however, the general form (9) in the following derivations. This
is more convenient and simplifies the resulting equations in some certain sense.



3. BOUNDARY CONDITIONS
3.1 Symbols and definitions

It will be helpful to refer to figure l for the interpretation of the
following symbols.

Ts =2z - 7(x,y,t) =0 : Mathematical equation of the surface (smoethed)

(z + H(x,y,tD = 0 Equa.tion of the bottom

-( T +T )=n+H=0 : Actual coast line on a sloping beach
- ¥ T k- A |
T : Surface unit normal vector ,
14| 0 I
_ D
k V : Surface normal vector
cos oes
_ra.‘Ps an/d
— t
ng Cs =S : Normal velocity of the surface

Ivil 1+| |
vl kevx

I'lb = - - — ¢ Unit normal vector of the bottom
X R T
n,
N = - (k +V H) = oS o : Normal vector of the bottom
. b
i‘;’a
n;o.Cb = . ot = OB/t : Normal veloecity of the bottom

VP, vis |vhn|2

as, otb : Slope of the surface and the bottom respectively
Am : Mass exchange at the surface (normal)
P-E-= _Lm . Difference between precipitation and dynamic
cos g evaporation
Lowerind.ices 8, b : Describing properties of the water at the boundaries

Upper indices (a), (b) : Describing properties of the adjacent "fluids"
S = - 5?+? : Stress tensor

n- g : Stress vector

.-




lNS“lK‘thl le”“"K‘WH : normal vectors

N,
In =JN§' ln = o= : unit normal vectors
> INS| * NGl

an JH

i Ot e

Figure 1. - Explanation of the symbols.

3.2 General remarks

The kinematic and dynamic boundary conditions at surfaces of discontin-
uity require mathematically defined boundaries » internal or external, which
possess derivatives of the first order. This may be guaranteed by the fore-
going'process of first time averaging, e.g. " (x,y,t) if the derivatives Vhﬁ s

dN/dt are considered to exist everywhere.

If the fluid consists of two or more dissimllar layers separated by sur-
faces of discontinuity the kinematic equation of discontinuity (9) must be
replaced by a kinematic boundary condition and the dynamic equation of motion
(10) must be replaced by a dynamic boundary condition (Serrin [27]). Both the
upper and lower boundaries of the- sea may be considered as surfaces of discon-
tinuity. : .

The kinematic boundary condition at a discontinuity states that the sur-
fgce divergence of the velocity at the ‘boundary is proportional to the mass
exchange at the boundary (Truesdell and Toupin [34]). If there is no mass
exchange at the boundary, as generally assumed, this condition means that the
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‘normal components of the velocities on each side of the discontinuity surface
are equal to the normal velocity of the surface itself. Stormm surges are
generally associated with severe storms and it is likely that in some regions
locally heavy rain or surface run-off from rain occurring over land contri-
bute a measurable part of the surge. The usual form of the kinematic boun-
dary condition will not be satisfactory in such cases.

The dynamic boundary condition at a discontinuity states that if surface
tension is absent the stress vector will be continuous at the discontinuity,
and in the presence of surface tension the cSmponent of the stress normal to
the boundary will have a discontinuity proportional to the mean curvature of
the boundary surface (Serrin [27], Wehausen and Laitone [38]). This latter
condition is usually neglected, but the work of Keulegan [19], Van Dorn [35]
and others showing that the denevaluation produced by a given wind is de-
creased by the addition of detergent to the water imply that this assumptiop
should be reexamined.

3+3 Kinematic boundary conditions

No significant mass exchange occurs at internal discontinuities or at
the bottom. Consequently, at these discontinuities the surface divergence of
the velocity vanishes. A mass exchange may take place across the interface
between air and water. Normsl evaporation is universally present. Spray is
added to. the air by the breaking of waves and by other processes. Some of
this water evaporates before the resultant drops fall back to the sea surface.
Water is added to the sea by precipitation, and near the horizontal boundaries
of the sea, water is added by the run-off of rain water from land surfaces.
All of these effects, other than precipitation and run-off are due to dynamic
effects near the surface of the sea. They may be considered collectively as
"dynamic evaporation," positive when the sea is losing mass at the surface
and negative when the sea is gaining mass. Therefore, at the surface a source
or sink of mass occurs corresponding to the sign of the difference between
precipitation and "evaporation."

Disregarding internal discontinuities the kinematic boundagy conditions
at the surface and at the bottom are

(oiv¥), = A, - [v(a) \'}sl= (12)

(v)

>
m°"s|

A
- V.b = 0, (1.2)

A )
(DivV), =D, {V
Introducing the normal velocities of the boundary surfaces ﬁhich replace

the values I g V(a) and nb i V(b) respectively one obtains

7 LA 23‘“’ A - A _AE¢———__-—=Am
3t Ns Ve =35 * Vi, Vp" - Va,s '.-3— 1 +|Vh'q I2 = cos o
s s 8

(13)
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): A . A A
SE.Nb.vb_aﬁu Vo VE+V, =0 (14)
or
M T L 1, = = -
%-NB'VB=g(P-E); z = T(x,¥,t) (15)
aH--..N- . G =0 z = = H(x,y,t) (16)
yt‘ b b H = W

The kinematic boundary condition at the actual coast with a sloping bot-
tom, n+H = 0, can be formulated as

. Mﬂo’%—nl + vh,coast : Vh(n +H) = %—; (P - E); (pl) =0 (17)

The kinematic bounda.rj condition for a vertical coast or seawall is usuall.
expressed as _

A
Ilb *V=0. (18)

A general. time dependent equation for the bottom has been used for the
seke of generality. This causes no difficulties in the following considera-
tions and may permit application of the resulting equations to Tsunami prob-
lems. '

3.4 Dynamic boundary conditions

In the absence of surface tension the dynamic boundary condition at inter-
faces between dissimilar fluids is given by the vanishing surface divergence
of the stress vector. The boundary between water and bottom material may be
considered as an interface between two dissimilar fluids. Thus the condition
of vanishing surface divergence of the stress vector (Serrin [27]) means

(v ), =B, - §™-8) =0 | (19)

(DivS)b'

n, - §™-3) -0 (20)

L]

This can be written by means of the definitions of the stress vector and the
normal vectors of the surfaces

N (-5,8+3)-N-(-5&¢£. g9 (21)
N, (-5€ &) =N, - (-5 OF . g™, ()

Inthecase of surface tension (19) ha.sb to be replaced by
| (v, =n, - ¢ -8) -Fn, (194



1
where T is the coefficient of surface tension and R is the radius of curvae

ture of the surface {Wehausen and ILaitone [34]1). 1In this case (21) can be
written as »

N, - (5,4 %) =ﬁs l -(B(a).* 2 £ ?43.)] S (2 |

This shows , that surface tension provides a correction of the external atmos- |

pheric pressure S(a) .

Therefore, in the following sections surface tension can be included

easily by replacing p (a) by p (a) + % » where the radius,R, of curvature can
be expressed in terms of derivations of the equation, H, of the surrface.

In principle, the storm surge could be calculated by solving equations
(9) and (10) together with the kinematic boundary conditions (15) and (16)
and the dynamic boundary conditions (21) and (22). Unfortunately, this is
not possible even in the simplest cases.

A remarkable simplification is possible if the boundary condition (22) is
known at the beginning of the calculation. However, this boundary condition
depends on the pressure at the bottom and on the bottom stresses and these
properties cannot be known before solving the complete problem. The usual
practice is to assume that the hydrostatic law holds for the pressure at the
bottom. This appears to be valid in most cases but it cannot be entirely -
valid for a consideration of the effect of surface waves on the water eleva-
tion in the neighborhood of the breaker zone. Even when the assumption of
the hydrostatic law for the bottom pressure is acceptable there remains the
problem of the stress vector 'E’z b ' c

2

The classical method around this impasse, first used by Stokes in the
nineteenth century, is to apply a no slip or adherence condition defined by
AV = 0, where AV denotes the difference between the velocity of the fluid
and that of the boundary material. This has been widely used and has led to
satisfactory results in several problems. The more recent work on boundary
layer theory indicates that the no 8lip conditions cannot be rigorous as a
description of nature and most later writers employ some type of no slip con-
dition, e.g. '

AV o f(n ~$) tang.

A linear relationship between AV and the bottom stress is generally
used when a qualitative but analytic solution is sought., A quadratic rela-
tion between AV and stress is generally employed when quantitative results
are sought and one is reasonsbly confident that he knows the proper direction
of the bottom stress vector. The no slip condition is sometimes used for
quantitative investigations if one has no a priori knowledge of the direction
of the bottom stress vector » in spite of defeects in the physical theory, be=
cause this will minimize the errors resulting from this lack of knowledge.
The no slip condition can be stated explicitly as
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3K
3t

TR Ny

thus expressing the velocity of the fluid bottom in terms of the motion of
the rigid bottom. The case for the stationary bottom is included for JH/Jt

= O, Other plausible assumptions regarding the stress vector are discussed in
many recent papers, e.g., Weenink [37], Schalkwijk [26], Reid [25], and Munk
Eei% , in connection with vertically integrated forms of equations (9) and
10).

(23)

The current, more rigorous treatment, requires not only the stress vec-
tor E but also the stress vectors E' and U' which are important if the
Z,h X,h ¥,h

slope of the bottom is not small. The same considerations hold for the sur-
face condition (21) where all components of the stress vector including those
vhich act on the waves of finite height are represented.

Principally because of the unknown bottom stresses, the use of the verti-
cally integrated form of equations (9) and (10) cannot provide the ultimate
solution of the storm surge problem. This must be kept in mind even if many
investigations show that certain special assumptions concerning the bottom
stresses give good numerical results for particular problems. However, as
already mentioned, the advantages of using the vertically integrated equations
of motion in many oceanographic problems are so great that the disadvantage
incurred by the unknown bottom stresses is less than the advantages gained by
this method.

4, VERTICALLY AVERAGED EQUATIONS

4,1 Symbols and definitions

1l
K== ju Adz : Vertical mean of a function A(x,y,z,t)
n+ H N
2 =.,__l Sy, pAdz : Weighted vertical mean of a function A(x,
p(M + H) SH ¥sz,yt) ‘ '
A=A+ A* = l:' + A¥¥* : Definition of ordinary and weighted vertical
mean
A% = 0; p A¥¥ =0 : Properties of ordinary and weighted mean
3 pdz = (q + H) .E. =Q : Instantaneous mass of a vertical column
“H '
7.A =\ L
5‘ pVaz = (1 + H) P ‘0’ = QV : Instantaneous mass transport vector
-H

e e

A 5 7 SO A e e S e
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AR - -
- pYEyy*x : Reynolds' stresses resulting from vertical averaging
- ( pv" V") (a) : Surface wind stresses

4.2 Rules for vertical averaging of derivatives

Taking into account that the limits W(x,y,t) and H(x,y,t) of the integral -
in the averaging operator depends on the horizontal coordinates and the time,
the following rules for averaging of derivatives can be derived easily:

-3a - S A

(wE) VK= V, l(wrrl - (V) & - (V0 & (24)

Lo aladad

om B -8 | G E

o) T 9| GaE [+ N, 8, +N,

for any scalar or vector function. This can also be written

Vik = Wk ::-L; @ (K- 4) + (v,8) (K- Ab)] (25)
nt "

A {vh(an) TN 4 +NbAbl
‘q+ .

k.3 Vertically averaged equations

Applying (24) to equations (9) and (10) one obtains

3 [—  TA
% l(m—H) 5V

l*Vh { (vn) 59,9 - {%@ -ﬁs-i,\m“r)s-\%% N, 3, |9,

X X
-t ww o

+ 2@x (7+H) 56‘: -g(ﬁ-}-ﬁ)ﬁ-\k;vhn("r)} + Vh~ ‘(;‘*H)(';ﬁ' P Vh V)

N l_isé(w)al; N, {-35\?-(9‘\%"'7'),0‘.

- - — A aH . A -
+ Gy ‘(%H)B(‘Ih] - [%2 -N.* Vs.l Pg ’\SE -N, Vbl Py =0

& { (7)p

Introducing the kinematic and dynamic boundary conditions (15), (16), and
(21) together with the definitions of ordinary and weighted means given in k.1,
the vertically averaged equations are
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Vo, ' Q“{V1+ 26xQV =

(n+H) (";I:J: - DVhV' - EVK*V**)] (26)

= - & [k -vhn(T)] + V0

+N, - [ 5 (€. (W)‘a’} N, - [ -;b?-.<W)b]+ BBV,

By -[WL} - F-E,  (aD)

where only the stress at the surface assumed to be known has been introduced.

These equations for the field variables Q,Va.re quite similar to the

original equations (10) and (9) for p a.nd*a with the exception that the ver-
tical divergence terms are replaced by terms representing sources or sinks of

the mass transport vector er; €.8» the additional friction term resulting
from vertical averaging and the stresses at the boundaries together with the
precipitation minus evaporation effect.

At this point it may be noticed that so far no assumption regarding the
heights or the shapes of the surface waves has been introduced. The process
of vertical averaging has been performed exactly with the aid of the complete
kinematic and dynamic boundary conditions. This was possible only because
the complete non-linear equations of motion were used. Consequently no terms
needed to be "neglected™ as is the case using the well-known linearized equa- I
tions. Many of the terms usually neglected cancel each other exactly. i

Unfortunately the process of vertical averaging introduces new unknown
functions, as already mentioned. The system (9) » (10) contains the functions

A o - s -
. V, p and p whereas the system (26), (27) contains V » P, and p together with *
) ?1 and the unknown bottom pressure and bottom stress, i.e. 7

) oeTe pb’ Nb.('DV"V"')b'

In addition, the turbulent friction stress tensor -5%**\7** resulting from

vertical averaging remains an unknown function., The system (9), (10) can be

made a closed one by assuming barotropy or by assuming a given density dis- -
tribution. The system (26), (27) cannot be made a closed one without using

very restrictive assumptions regarding the calculation of pressure within the

fluid and at the bottom, and regarding the nature of the stresses at the .
bottom, Usually these difficulties are reduced to the problem of calculating

the bottom stresses by assuming hydrostatic equilibrium and by introducing a

given density distribution taken from observations. In such case the system

is a closed one but since the hydrostatic approximation acts as a kind of -

low pass filter, filtering out all wave periods up to a certain period, leav-

ing only so-called long waves s -all effects connected with.the superimposed

small waves which may be important under hurricane conditions and which .
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are certainly important during the inundation phase, are neglected. There-
fore, it might be more convenient to perform & second process of time averag-
ing in order to get equations for the long wave-type hurricane surge leaving
only some correlation products between the superimposed small surface waves
and other properties and then using for the surge equations the hydrostatic
approximation.

One might think that it would be simpler, when dealing with storm surges,
to begin with the equation of continuity for incompressible fluids (9').
Actually, it is simpler to perform the vertical integration on the general
continuity equation and to introduce the incompressibility assumption at a
later stage. .In order to show this we apply the process of vertical averag-
ing on the equation of continuity (9') for incompressible fluids which gives

._— -

(mH) V- V= V [(?ﬁ-ﬂ) vh} +N V +N ’V =0 e

or with (15), (16)

Apd) . v, . l(mﬂ)v ] =2 (27")
emen ps

where the ordinary mea.n% of the horizontal velocity vector appears. In the
case of an inhomogeneous flmd with horizontal and vertical density gradients
the introduction of the weighted mean '6 which a.lsg\) a.ppea.rs in (26) is use-
ful. These two velocities are connected by é h Vi’;* =M - Gg*.and
therefore the equation of comtinuity (27') which replaces the general form
(27) for incompressible fluids takes the form

2 :H Y l *H)V] --—+V (7eE) 2% (21)

where the divergence of the vertically integra.ted deviations of the velocity
vector from its weighted vertical mean acts as a source or sink for the total
height 7+H of a vertical column of water.

Writing the general equation of continuity (27) in the following form

a"tn + vh.[ n+n)V’—f:§- T+H 52+V v, %

P

together with (27") the cordition of incompressibility for the vertically aver-

aged density p is

..- vam -=s __ - s -/-‘---- .
2.V .vp=-2 -2 - pvh-[(nm)vg* ,

L Py
replacing dp/dt = O in the non-integrated equations.
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The special case of no vertical density variations (3p/dz = O; V** = 0)
leads to the simple equation for the mean density

¥, V.05
§%+K Vhp-O
if we assume tha.t-lg-ﬁso.

4.4 Different forms of the vertically integrated equations

In order to get equations whose physical interpretations are easier than
(26) we take first the horizontal component of (26) given by

AR AR A4

® Vp | (w+E) ®

+ (aﬂxQV)h

+ G, - g s vy |G oV vy )

= Sthn
5 g+ No» v @ Ny (o7 v, + (B - B,

and separate the pressure into an internal and an externsl part; i.e.p—p(i)

f:( a) . Using then the equation of continuity, (27), we obtain

%flqvl; + V. ‘QVth; , + (200xQV ),

3V 5.5
= Q{-&m;. ¥+ o, - By
' (28)
dh h (20xV) + P

-B
P By

-- - - - - —-—-—

- @y- vhl(ﬁﬂi)"ﬁ(i)l s,V VEs v I(ﬁm)(-pv;;vg - BV

- (wE) ¥, '(“)+N (S N, (T, (P - E)vh

Thé vertical component of (26) written as an equation for the unknown inter-
nal bottom pressure is gliven by
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B et - bty whndiad aliad ot

v e, } (29)
Bt

& Q Q

g+ €

vhere QEb denotes the deviation from the hydrostatically calculated bottom
pressure,

Q

Equation (29) expresses the unknown bottom pressure p, by an also unknown
function él') but this function can be supposed to be small ompared to the

acceleration g of gravity.
Regarding the vertically integrated internal pressure (;+H) ‘132(1) & sepa-

rate calculation using the vertical component of equation (10) is useful if
one wishes to introduce deviations from hydrostatic equilibrium.

Starting with the vertical component of (10); 1i.e.
A
_ de - 3% v - - k
——— T2 e - . o - ®
P I gp -5t PVEV [ - 26xpV

and integrating twice over depth, first from a depth z to the surface and then
from the bottom to the surface one obtains

noon 4
— —-— Z
pdt + Ssz e ag
-H z

N3}

@m 3 <G -7 ) e |
=-H

1 1 0
dz jv. (- V" V) at + 26x (5 dz ‘?ﬁ‘}dg)o k.
-H z

Z

'
l.!nL/-\.-s i

Introduction of the deviation S*of the density from the vertical mean -3
and carrying out the integration in the first term on the right hand side

gives
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n
- — * 2
(n+H)p() =Q+g dzyp d§+£(1) (31)
2 p
where the first term gives the hydrostatic value resulting from the mean den-

sity; the second gives the effects of the deviations, in the vertical of the
density from its vertical mean value, or the hydrostatic value (this is not
not necessarily continuous); and the third temm 8( 1) denotes the deviation of

the integrated pressure (n+H) p (1) from the hydrostatic value.

Assuming hydrostatic equilib?:imn and disregarding vertical density varia-
tions (E,(i), S* = 0, 0) the form

ane g
@3V - @ (32)

2p
is the well-known "adiabatic law" with the fixed adiabatic exponent 2 used in

the so called "hydraulic analogy" expressing i;ha.t the integrated internal
pressure is proportional to the square of the mass of a vertical column of

 water (Courant and Friedrichs [5] and Tepper [33]).

Introducing the gradient of (31), i.e.

v, fm B (M} - Legmemmge - § g =) - - g: *ag)v, €4)
P Z

| Fﬂ‘-—-—\dl

(33)

]

-gQY (n+H) - g (%H)zvl;é.- g ( \ dz §3 *dC)-Vhi(i)
Z

‘and also the following expression for the mtegratéd gradient of the atmos-

pheric pressure
- (wovE M - amn®e 3 Gy (&) (34)
P

where (a)
- (a
"l(a) =2 (35)

g€ p

denotes the pressure deficit from some standard pressure, expressed in feet
of water, together with (29) one gets from (28) the following set of
equations
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RV,

2+ | VW, |+ (cwndV,
A\’ -
o[ + @), BTV | |
- -g2v, (o™ - {(w) (ovyvy - 59590

£V, b - gV, ( S azja*a;) +£av,s - v €
-H z

G v Ny ovvp® N (ovvps 309, . 06

-8aVv, ('ﬁ-n(T) - n('a') ) +V, ° { () (=pV V) - QV**V**)

7
+QI§Q+'(8‘)}V(-..)-8Vh(fdz So dt)+wQVE V"‘i}
o -H Z

T —— A
+N_ - (-pV"v;;)(a)+ N, - (-ovwy), + (F-E)V, (37)

which can be used in different combinations for convenience. Together with

(27), the equation of continuity, this system is considered always as a 8ys-
= _x —_— A

tem for Sh and n whereas p; p , é:.ﬁ,_g(i), (-pxr" Vk';)b’vh a must be given.

. ,

Regarding the deviations ﬁ( 1) and 5:0 from hydrostatic equilibrium, how-

ever, a further approach can be given. Considering first the second term on
the right hand side in equation (30) and introducing here also the deviations

p from the vertical mean of the density one obta.ins epproximately
A

1 70 dﬁ - noav, 7 _*avz
jdzg &"' =pfdz5‘ —z at + fazf - &
-H z -H 2 -H z -
7 T oy T A
- w3 A
~ P} dz d(-g-)-l-gdz Iy a—;dg
-H 2 -H Z N
A2 - av
v v N _ .
zQ(-éE)-Q(——)+Ssz a %
Z




We therefore get for 6(1) the expression

AR
&(i)=al(§§)s-(§5)l+gdzgi T U gdzgv-{-DV"V’z']dz
-H Z -H z
10
+ 263 ( gdzgi;vdt) -k (38)
-H 2

A -
wvhere the term containing (Vz)s can be expressed further by n with the aid of
of the kinematic boundary condition (13). It appears likely that the first
A JR
v e
term on the right hand side, i.e. QI( —2-z- )s - ( _é_z_ ){ gives a good approxi-
mation for 5(1) in practical cases.

The same approach can be found for 51; by integrating the vertical compon-
ent of (10) over the total depth leading to the expression for Eb in the form

/\‘,2
av —_—
X 2y (== —2 . V| -ovmve l .
n+H
vhere again the kinematic boundary conditions (13), (14%) can be introduced in
A
order to eliminate ("}z)s and (Vz)b. It appears that a sufficiently good
approach for many cases is given by

1 1 ~
~ Z\ A 1 ,09,2
- by m o ()= ;]-;;(5 )

In concluding this section, we consider the case in which viscous and
small-scale turbulent friction can be neglected and in which all typical hur-

ricane effects are disregarded; i.e., ('ﬁ(al (-DV"VI';)(&), P-E) = (0,0,0), and

p = const. Neglecting further the astronomical tidal potential gradient,
equation (28) can be written

V; - =)
dhdth + wxXl = =V, { (n+H) p(i)l + gV,

+&QV, B +V, . | (B (-o VE*TE)

Q
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The first approximation of the shallow-iva.ter wave theory, described by

dh‘V.+ 2me] "-Vhl(m-ﬂ) p( )l +sQVhH

(E) 3 (M) -

aQ .
5t *h ‘Q-Yx

is obtained by neglecting the terms

mlm
ol

s (%0)
=0

€0V, E G, - | (W29 | g, ,

Therefore these terms represent the higher approximations of this theory;

Neglecting these terms also in the general equations (28), (36) or (37)
means that the resulting equations are some kind of first approximation of
the general equations and show the same restrictions that are included in the
first approximation of the shallow-water wave theory (Stoker [29], Wehausen
and Laitone [38]). This will be considered later after having performed the
second time averaging.

5. STORM SURGE EQUATIONS

5.1 Second time averaging

We use a second process of time averaging in order to obtain equations
for wave periods on the order of storm surge periods and longer. The time
interval may be of the order of a few minutes.

Using the same definitions for ordinary and weighted time mean as given
in 2.1 the averaged equation of continuity (27) is then given by

A -
?rq-pvh lQVl -QV -K P-E (k1)

whereas the averaged equations (28) , (36) and ( 37) are

%t- |§W,+Vh' ‘ EVVl + (etdxfl-Vih ldh%i}:1 + (2&):37) + === P-E ]

,----—- -— .—--- -

- @vt-yg, (mn)pbi)] i)VH+\7'{(n+H)(-pV"V")+(n+H)(-pvh 2 VEe)

+ ( QV'V)] - (WE)Y,; +N ( pV"Vﬁ)(a)+N (-p V" VR (P"E)Vh 8



22

IR AR AL B TR S At TR e = Viv)

-8 (®E) V5 - gV f dzf E*ac) +EQVE-v, D)
-H 2z

() v, 5%, f\t Covvn @y N,- (-v"vp), + (F‘ﬁ){"ﬁ,s.

- 29,7 + 89,1 Vs @y a(P v (W) -6V LV Jo(em) (-8 )

l e e v omam e o —

— - T3 _
+ -WW{;)J +Q{ £+ 3(®) } %(=)-69, ( [az Sﬂ E*ac) + EAV,H - 1)
p E

+N, * VDN, (v, + BT, |

‘Introd.ucing for the time mean of each product term the mean value and
the corresponding correlation product one gets this for the second representa-
tion

a -./\
&’QV;
—A

= -&d vh(ﬁ-n“'))+ v , (m+8) (-0 Vi vy) +(TE) (-7 vg*ﬁg*)Jr(-QV;;V;)

+Vh-! ‘Q’Vh%] + (QGJXQV)f [ %YE +(2wa)h + i-:g.@t; I
Q

= Iz w2 =] = 3 3 o —
g pv,( 1) - %{ (7m)2 (n'e)]vha - o [a= (") g3 v pegav - v, 6D
' -H 2

' o= 7‘-"!2 = = = =(a) == —_— (a)
8 Vp(P" 55) - a(m) v, (5 71) - (hem) V5 *Ng - (V)

+Nbf (-pv"vl';)b+ (?-f)‘?}-h’s- 7 Vhi'(a;h ﬁ; . (-pV"Vt';)'(a’)+(f'-§')<\rt'l’s
| (42)

This equation has been written in such & way that the analogy to two-
dimensional compressible flow is apparent. Writing (%1) and (42) in
abri;d\ged form, i.e.

A
A
i R S A4 -+
-&Ei- th.vl-l = P-E d-——dt, + QCOXW;I =_E- H'Th.
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the system in fact describes the two-dimensional compressible flow with
"density" Q (mass per unit area), velocity 'V];, mass generation P-E (mass per
unit area and time), and with the sum IE' of some "forces" (force per unit

area). |
The physical interpretation of the terms in equation (42) is as follows.
The left hand side contains terms connected with the mass transport of

larger scale, i.e. mass transport connected with the surge and the astronomical
tidal weve. Here

Q= (X pdz ) , QK = (g EVhdz ) , (H-I-H)Vl;% —?_g—(gstl‘lhdz) ‘
H P m

are the mass of a vertical column, the mass transport vector and the volume
transport vector respectively. The volume transport vector has the physice.l
meaning of a barycentric velocity.

Regarding the Coriolis acceleration there is no doubt that this term can
be approximated in the usual way

A A
(V) = tR«V,, £-=20sing (43)

The right hand temﬁ are acting as "forces" to produce the mean hori-
zontal mass transport 5Vh within the surge. These are:

(1) The well-known force resulting from the mean inclination n of the
surface

- €8V, 7 (b4)
(2) Generalized lateral friction
V, + F =V, | (WESTIV]) + (RE) (5 peEs) + (-QV) )} (u5)

vhere the lateral "friction"stress tensor consists of three different turbu-
lent friction tensors resulting from three different averages of the non-
linear terms of the equations of motion.

Following the usual assumptions regarding the correlation products (45),
it can be written forma.lly (Eliassen and Kleinschmidt [9])

A
PV Vi Kh
ATTRET ._.;( 2) V JAN
VRV =P 5 Y B AAAA (46)
(3)

<
<
nP‘
=<
-
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(1) (2) (3)
where the coefficients Kh’ Kh and Kh of eddy viscosity certainly have dif-

ferent meanings and may be expected to have different values. The first one
is connected with small-scale turbulent motion averaged over a time interval
of the order of seconds. The second one describes the structure of the ve-
locity distribution in the vertical and the third one describes turbulent
lateral friction connected with the mean motion within the surge averaged
over a time interval of a few minutes.

Introducing (46) into (45) gives formally

_ [ &) (3 ]
Vo T =% | (w0 b K Y, G + (wH) b K, Y,V + 3 &Vh_\z
OIS (ﬂ, (3) Ki\’
=Vh 1 ("I"‘H) P Khvh n T q Khv +q h (47)
_ ) A (2) : (5) 2%
TRV, + K GV, + kK TV}
which might be written but only with rough a.pproximation »
v, rF =Y {Q A V} =~k v2 @V) (48)

where very little is known about the new coefficient of eddy viscosity Kh'

(3) Boundary friction stresses:

(a) At the surface we have

—N_'-so(_pv vvh)( ) N ( pvnv )(a)+N|.( oV " ﬁ),(a)

)(a.)_

i = (-pV,Vy, v, e ( oVﬁVﬁ)( =)y p' e (-eVpVy svrvn) (e

b

N, v ™= T - w7 AT +ITo - % - Areia )

(%9)
where the definitions N =k - th from 3.1 and T from (%) have been used.

(b) At the bottom

~(-pViV), - VE - (-oVpVE),

1

N, - ov'vp),

= : < = (50)
" (Tondy -Vn B (Ex;h)b + 1T, 0,

N’b ¢ ('OV"V]:_; b
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with Nb = -(k+VhH). This expression is shorter than (49) because it can
be assumed in this problem that the bottom is not a random function of time.
The expressions

N, - (pv"v")(a’ T (51)
N, - (v, = (T, ), (52)

are widely used. Strictly speaking, these are valid only for a flat bottom
and only for a very long wave with a gentle slope and without any superimpos-
ed surface waves of finite height and shorter period.

If a complete spectrum of waves is present and if the surface wind field
is turbulent, equation (51) does not provide sufficient information about the
effect of surface friction from a theoretical point of view. A better ap-
proximation is provided by

N, - Govvp®e T - v - dgl«itih.
More empirical data are needed for a full evalustiod of the corrective terms.

(4) Atmospheric pressure gradient

The so called inverted barometer effect is connected with the external
atmospheric pressure gradient in the case of equilibrium and is given here by

- (v, 7 - - oY, 5 -5y, @

where an additional term connected with small-scale variations of the pres-
sure gradient appears. This is small even under hurricane conditions.

(5) Wave set-up term

The wave set-up term in (42), i.e.

= -2
-8DV(")

is a typical non-linear effect of the equations of motion. All superimposed
waves contribute to this term. The effect is proportional to the negative

horizontal gradient of the variance (';]"2) of the superimposed waves which
usually has a maximum in the breaker zone near the coast. If no other effects

are pre@ent the mean surface elevation n should have a minimum here and may
increase sharply between the breaker zone and the beach. In the open. sea
this effect 1s small; however, near the coast under hurricane conditions this
effect can be very important.
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(6) Horizontal density gradiemts and vertical density variations

Horizontal density gradients build up a force in the equation for hori-
zontal mass transport (L42), i.e.

a——
-

A

- -g-{'( e )2+ (719)

which is directed toward smaller mean density values p (Hansen [1%]). In the
case of equilibrium, the mean surface elevation 7 should have a maximum where
the mean density has a minimum, as is the case along the axis of the Gulf
Stream near the coast of Florida. Such density gradients affect the storm
surge by resonance under certain conditions.

—
——-

The influence of the vertiecally integrated deviation B—* from the verti-

cal mean E is given by

Tl —

-
-H z

where discontinuities of density in the vertical are allowed even with non-

horizontal boundary surfaces between the various layers. These boundary

surfaces, however, have to be known in each theory using the vertically in-
tegrated equations of motion integrating over the whole depth.

(7) The terms connected with density variations with time

The terms
-£9, (57 - s (W) Y, ( 57

represent correlations between local variations of the vertically averaged
density with time and the small surface waves which are surperimposed on the
surge. Such density variations can be caused by rain or suspended sediment

. even in incompressible fluids. They can be important at the mean actusl
. coast where at a fixed point during the time interval of the second averag-

ing the water is oscillating around the mean actual coast line which varies
with time more slowly than the instantaneous water line. Except for this
possibility of importance near the coast » these terms can be neglected.

(8) Tidal generating force

Tlié term contaiﬁiné the gradient of the astronomical tidal potential -

g Qv A v, @ ()

is small for' scales compared with hurricene dimensions. Interactions between
the“tidal Wave current and a basic current can be treated by subtracting
‘thesé ‘currents from the basic equation (42) leaving then an equation only for
the hurricane storm surge. . ‘
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(9) Non-hydrostatic effects

These effects are contained in the two terms @Vhﬂ and -.Vh 8(1). '

Introducing the expressions (39), (38) for & and éi) one gets explicitly

b
2y 5 e ]
[ ? av ]
i = z Z —% "g ‘
ERT,E -V, ”[" l(é" 5" (?)b-] tAP gt [ VR
AD 33" TN A
v v § av ) ] |
z z —* z :
- Vh [Q{(e— s~ (‘é—-)' + (-HidZ g o] T at. +ﬁo .o

~ A A
= ?,3 vi =" Vi ' zy -, : '
= (o] (E-)S - (‘é‘")b + P (‘2— VB- (-2—)1) +Q p E‘E— +oee VhH
[ &, - &L (B &) )
- vh Q (—2—)8 - (-2-) + Q' ('2—)5 - (-2—) + eee
where the friction and Coriolis terms have not been written. The boundaries .
can be expressed in terms of n and H by introducing the kinematic conditions

(13) and (14). After the second time averaging process has been carried out ,
the non-hydrostatic terms can be expressed in terms of the mean motion of the

surface and correlation between the elevations ﬁ' of the superimposed waves
and other quantities.,

The non-hydrostatic terms represent one force in the direction of VhH =

- vh( -H) and one in the direction of -thzi). The first one vanishes for a

flat bottom. In this case the second one is small. However, if the bottom
slope is great, the induced vertical velocities are also greater and there-
fore the non-hydrostatic effects become significant.

Writing these terms in the following form

- S—— —-——

EAvE - GEN- BV (5TE,) + (om 5 & + 5 Ep v,a - v, BY

a correlation between the turbulent pressure variations at the bottom (non-
hydrostatic) and the amplitudes of the superimposed surface waves appears
which may be important in connection with special bottom configurations near
the coast.

(10) Precipitation-minus-evaporation effect

In the case of mass exchange at the surface of the sea the complete kine-
matic boundary condition (15) led to a source term in the equation of contin-
uity and also to a source for the mass transport in the equation of motion

given by
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— —_— N e _ -— - A
= - (. ' t .
F-B) ¥, =(F-BF,  +E -2
A
Here either the instantaneous horizontal surface velocity vector Vh s
2

has to be known or its decomposition into the time mean and the turbulent
fluctuations. This effect is small even if there is heavy rain within the
hurricane and can be neglected in the open sea and in not too shallow water.
However, in small basins with shallow water this effect may be important.

5.2 Basic equations for long-periocd motions of the ocean

The equations derived so far are quite general and the introduction of
approximations or special assumptions has been largely avoided in the deriva-
tion of the system (41), (42) for the mass transport within the ocean under
the most general conditions of an atmospheric wind- pressure- and rain-field
acting on the surface of the sea. The effects of surface run-off of rainwater
falling on the land bordering the sea and of rivers emptying into the sea have
been neglected.

Not even the conditions of incompressibility or homogeneity have been
used and therefore this system can be applied to the description of many
atmospheric motions as well as to oceanic motions if the boundary conditions
are suitably modified. If the vertical averaging is applied to the total
mass of the atmosphere, the two-boundary value problem of oceanography is
simplified to a one-boundary value problem for the atmosphere, but in this
case the turbulent nature of the sea surface as expressed in equation (49) may
need to be intluded in the bottom boundary condition (50). The application of
this technique to atmospherie motions will not be carried out here but the
reader is referred to Van Miegham [36] for a discussion.

Writing down the system (41), (42) once more using the approximation (143)
for the Coriolis acceleration and the notations (45), (49), and (50) the
final system is given by

“:
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where the different "forces" have been arranged in such a way, that each col-
umn is supposed to have a different order of magnitude for purposes regarding
the storm surge. Unfortunately too little is known about the order of magni-
tude to be sure of this arrangement. Also, a change of terms from one column
to the other is possible during the approach of a storm to the coast.

It is interesting to formulate the equation of continulty for an incom-
pressible fluid which replaces (L41) in this case. Averaging (27") over time
leads to

At 4 g l (ﬁm)Vh] - (EEy. {(n+a)§}"
o

or

B(§+H)_ "'Vh . ' (;+H).$/\Th| = ( %‘E ) +V, (11+H)-V-;- ) ﬁ'%‘" l )

which gives the change of the total water depth at a flxed point in terms of
the divergence of the mean volume transport vector (11+H)Vh and some sources

or sinks for 'q+H on the right hand side including besides the time mean of

the term depending on the integrated deviations V ;* from the weighted verti-
cal mean and also on the correlation between the heights of the superimposed
smaller surface waves and the corresponding fluctuations of the mean velocity

vector .VI;

Introducing Q@ = p (M+H) = p (N+H)+ p'n' in the general equation of contin-
uity (k1) this equation can be written in the form

1[5 =, =4

+H)+v (frl-H)V —-I'LH"ap-i-V Vp 'TM"‘V' (plnl)‘Vl

h’ = = b 3t h h
! P

from which together with (38') (for incompressible fluids) the condition for

incompressibility for the mean motion follows in the form

58 +v %p - = [(‘P-i:')-p(——)-"v (n+H)5;;"1 V"l IJPTU*Vh I(" W )V ”]

—
-—

wom

The density variations o' during the interval of averaging in an incom-
pressible fluid correspond to the inhomogeneity of the fluid. These density
variations certainly are small in most cases and therefore the last term on
the right hand side can be neglected.
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Disregarding further vertical density variations and the precipitation-
minus-"evaporation" effect the condition of incompressibility can be used in

the form - _ -
n+H

For general considerations, however, it is more convenient to use equa-
tion (k1) instead of (41') and introduce the property of incompressibility at
a later stage of the calculations.

5.3 The homogeneous ocean and frequently used storm surge equations

In most of the mathematical treatments of the storm surge the assumptions
of homogeneity and incompressibility are made. These assumptions mean in our
notations .- ==

Pp=p=p=p = const. .
= (56) .
Vh p =0,

Therefore we get a system of equations for the homogeneous ocean y. divid-
ing (41) and (55) by p. Introducing further the definition (35) for n a) e

have _ A ==
astntﬁz +V, . t(ﬁﬂi)‘rh ] =f;—E- (57)
[, oy Lot e oy, -
5t | (V| +V, (n+H)Vth + fRx (mH)WI; -V, - -
&% S X ;
=(H){ + 2RV o ZE Yi. v o B
at XVp * p(%ﬂ)% h’ T
- - =2 _
= -g(7+8) v, - & v, () + g7 v, o)
+e(em) v, 7 e Ty ® (58)
7(a) (a) (a) 7(a)  =(a)
T - .T i - .C )
+ ___2_22 - vhn: . (1 ’p‘)h + ]'mg,h ) - h,r-l . (1 x,h + ] E‘y),h)
(T, ,) (T, ), (T, L)
-—-652}3_2 _vhHo(l ::)hb_'_] %ﬁﬁ)
+& Y, B +(ﬁ+ﬁlgvhn
&
- v,
+ —P%EQ’h,s
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which system can be considered as a system for the volume transport vector

(7+H) Vh and the water elevation 7, when the remaining variables are known.

Sometimes it is convenient to introduce into (57), (58) the speed of long
waves C_ and a fictitious speed C g’ defined by

L
@ = g(7m) ; - &7 )
vhich lea.ds to the system
sh d.t * OV VI‘{; = Sg_L (P-E) (60)
A.&' A ~ ~ —
dhdth * kavt; } %(ﬁ'ﬁ)(vh,s ’M) -5 Y, - 5;; =
pCp pCy
& i (1)
= - ¢, v, (2C;) "z v, 537) +gVvn
L
2
+C vh(zc ) + 52 7 Vh'ﬁ'(a)
c
L (61)
& T - HVACAYRAT) - Ve AT T
pCL ’ pCL ’ ’
- 4T, ), + £y b [(w‘a) HBED-(1(T, (T, h)b)}
oCy 7 pCy ’
+ E%— E:';ﬁ_'vhﬂ + E;Vhﬂ
L
' = .Lv -(i)+ £_ (P'-E' )XY
pci he pci vh,s

A
a system for the field variables\), and C_

D 5{!.“."-guation's« in connection with the first approximation of the shallow-
- . water wave theory '

If for the long waves we' assume hydrostatic equilibrium holds in the mean
and if in the friction tensor 3"1'1 we neglect second order non-linear terms

which were the result of vertical averaging, then the terms

Evr, & o and (T (- TRETR)
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drop out and the resulting equations may be called equations of ‘first approx-
imation in analogy to the corresponding equations in the. non-linear -shallow-
water wave theory. The basic equations of this theory are obtained from (57,
58 or 60, 61) by neglecting all external influences and internal friction to-
gether with the assumption that no small surface waves are present; i.e.,
(Wehausen and Laitone [38] and Stoker [29]) : :

BB vy, - |G, | -0 '

% |Gt v, - [(ﬁm)\iﬁ;] - g7 V.5 (62
or .
a,(2c,) A ‘.
& TV "‘}Z =0 :
A A
4 Y

& = OV, (2¢) + g Vi (63)

The extension of these equations to equations including storm surge
effects and the Coriolis acceleration but excluding the effects of superim-
posed surface waves and the terms in the third column of equations (58) and
(61) 1s given by Freeman and Baer [13].

J;',’—H }H + Ve (§+H)§7;, =0
%,(aﬂ)ﬁ' + Vh . '(%H)‘sgﬁgl + flex (12‘.,.3)'6\71; - (64)

= ~g(+H) A (q - ﬁ(a)) + "Jj (”Eﬁfﬁ - (?@,h)b)

or
A
4 (2c.) A
'hc(itL * OV °$2=°
A @7_ (65)
A — d——
dgt 2 + ka“i = -0, Vp(2ep) + e v (2c,) + -5 ('Giii), - (mz,h)b)

pCL

These can be solved by the method of vave-derivatives (Freeman and Baer (11,
13]). Ilateral friction is still neglected in these systems. However, the
systems are closed for the unknown functions if the stress at the bottom is
known,

5.32 Separation of a basic current

It is desirable, in storm surge research to separate from the total solu-
tion a basic state which would be present in the absence of the storm. This
basic current includes the astronomical tide, semipermanent currents ; and any
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transient currents not due to the storm being investigated. The Gulf Stream
and the counter currents near the shore are examples of semipermanent and
transient currents.

The complete equations (57), (58) for the homogeneous ocean in abridged
form may be stated as

a%ltﬁ_) A ‘(TH-H)V] =§ﬁ

aV A 2 35 _‘ -
+Vh . Vth + fk’&i + f:?.vk‘l _gvh(ﬁ -7 (a)_ 1‘(T))

¥ p(?:n) Va° 31; ¥ ’Ef':l)a - (Tphy - %E (i(;a?x,h)b+ j(fy,h)b)mKh}
where — (a) (a) L
Kp=-eV (%) -9 - (13224 LBy 4 € 7)v,x
gla) gla) e sz

p

is assumed to vanish for the basic current. The basic current is defined by
the following (hydrostatically approximated) system

=(o) ,
37 °+H)+V [(n(°)+H)V(°) (66)

swie)

A A A
S VL ), geflo). gy (o)™,

g vhﬁ"(a)- Vi - ;"h +j LB) + & (em) v, H -V * P—'—E-Oh,s

(67)

1 { 3:<<>) —(o ) _3.=(0) (o) ]

+——(-)-—_ (E -V, B (1(11; )+(u: nly)
o(n°/+H) ]

which does not contain any storm effects. If one separates the storm induced
variables from the basic ones by

V __.‘%AI(O) _’_'6\7(*) - 5= ﬁ(o) + =(*) (68)

the pure storm surge equations for the homogeneous ocean may be stated in the
form

7.y . | GLa T 4 5 () ) - EE (69)
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A
BV (= " A A A Ay 55 A AL
—= + VO g VOV vV (e el 22 OG0

_ =(*)_ —(a)
=-gV, (0 ) (10)

. 1 , v F M. Tig‘;)l-( ng,),)b- v, (i(ﬁf:fg)b»rj('ﬁ;'g ", )."“’Kn}

o(7{)45{*)g)

5(%) l =(0) ,=(o) . =(0)y s (o)) |
R % T oy - ATEDATD)-
o) (3 L * 8 ’ b Ty

The storm surge variables, indicated by the star, may not be small compared
with the variables of the basic current. Therefore, the interactions between
basic current and storm surge current are quite complicated and it will not
always be possible to obtain satisfactory results by perturbation methods.

In principle the solution of the basic system (66), (67) has to be known
with satisfactory accuracy for each individual domain of the ocean to calcu-
late the required storm surge under given atmospheric conditions.

Disregarding internal lateral friction and neglecting the terms contain-

ing .15'-33', Kh s and VhH ° (le';Vﬁ)b, the simplified system is then given by

=(*)

= A A

on_, v - ' (ﬁ(°)+n)€’£*)+ ﬁ‘*)(V§°)+V§,*’)} =0 ()

ot ; [t
) A A A A A !

—+ (VW) - o VW g ka9 cgw, (O 5o

3% —(o)

—(_)_' lwzih)b *

e =1 (T2 - (@i*))f =(o +H(

o(eE) | 0B B

SHis

Another system for the pure storm surge current is obtained if the com-
plete equations (57), (58) are written in the form

%ELH)Wh -5, = EF (72)
25 'S. S 3 -
=g 2} s ek, = o) 9,27
— (73)
I _ _ [T, ). T )
+Vy "E +% [Tﬂiﬁ' (Ez,h)b, “VRE S ’i ;’h 2+ Z’h 2 +K,

i
i

1
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where the volume transport vector
A
S, = W (74)
has been introduced.

Writing the basic current equations also in terms of the volume transport
vector

=(0)
a(z!t +H) | v, - Sh(O) -0 (75)
BS(O) ‘S(O)S(o) )
-t Yy [ =ToT.,. l + tkxS{) - g7l v, (74T
3(0) (,E(o)) 0))
+V = 1 (;m(zok)x) _V H ’1__25:1‘_ +] ] (76)

and subtracting this syatem from (72) and (73) one gets for the storm surge
=(* *
variables n( ) and S( ) the system

-(*) * ==
A+ vy, S -E2 (M)

* (0)q(*),q(*alo), g(Ng(*) #(*)qlo)g(e)
o ( )+Vh . [Sho Sl(l +S£ )Sho +Sh Sh S o S o l . kasg*)::

3t e ) (n+H)(n(°’+H)

3‘(* .
- -a(mn v, - 1) - (Mg 0l 4 ) wg, [‘w(“’ (T, 1)1)"0}

"(*) (11,J )

- V,H [ 20 L2 bl +K,» (78)

' (%
where the term gﬁ( )th(T)is negligible in most cases.

The simplified system corresponding to (7l) is given by

=(*) . *
at * Vo Sl(:l):o

35(7 8,8, Sl

h_“h (¥) |
—'5_-‘_‘— +Vh - %(0).’_3 }"i’ kash = | (79)

7+l

- o) 7 G- 1) - 6 10y, 7@ @) %[ T (ﬁf&)ﬁi“
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where the divergence term on the left hand side of the second equation has
been written in the original form. |

These surge equations contain in a quite general sense all interactions
between the pure surge current, caused by a hurricane acting on the surface
of the ocean, and a basic current which includes also the astronomical tidal
current. Whether the system (69), (70) or the system (77), (78) is more use-
ful for the study of non-linear interactions cannot be said at this time.
However the simple form of the equation of continuity (77) is one adventage
of the latter system.,

In a linear treatment no interactions can occur. Thus the best approxi-
mation at the coast is a simple addition of surge height and tide height.
(See equations (83),(84).)

5.33 Equations in connection with linear theories

The starting point of all linear surge theories is the equations for the
first approximation of the non-linear shallow water wave theory, i.e., the
assumption of hydrostatic equilibrium and the assumption that the horizontal
velocity components are not dependent on depth (see 5.31).

In the first step of linearization one usually neglects the non-linear
terms which contain the dya.dic product of the mean velocity Vh and the terms
th . (-Vﬁvh"f(a VH - (-pvh“vh") on the right hand side of equation (58).
This gives the system,

NE . _P-E
2 v, - 5, - = (72)
as g(l) B
— _ (80)
Ta) ,w.(a) L

- eV, (- ) g Ut v (2R L IS v 8
in terms of the volume transport vector Sh'

Disregarding the effects of superimposed wind-waves and swell, the effect
of the excess of precipitation over evaporation, and assuming an approximate

expression (48) for the divergence of the friction stress one gets instead of
(72), (80) the simplified system

35,

T*fk"sh'KnV?S g(n+H)V(n ol ())+ ’w(z (fz,li)b] (82)

or, with the further approximation T<H and the assumption H(x,y,t) = H(x,y)



38

%t'=1+vh-Sh=0 (83)
33 o —(a) =
= + tki8, - 938, - e, GO L F g ] e

This system is in common use for almost all treatments.of oceanographical
problems using the vertically integrated equations of motions and ;fs used in
almost all theoretical considerations in connection with the storm surge
problem.

5.34 Wave equations

The complete system for the homogeneous ocean (57), (58) can be written

in the form _
) _3(n+H) P-E

35, .

W + aSh - }Slvhsh + kaSh = - ]E-; (86)
where some "forces"have been split up and where now

S,S g
h™~h = = - T h 2

=Y I . I - g(MH)Vh(ﬂ-n(a)-n( )) *Vyr o KthSh

=2 (a) (a)
- - ""2 — . . 1

—=(a) ?a)
— = o "m ,h ,h
(a) v d ;‘ L7y

+E'V E + gn'V e *]—5
(T )
X,h’db 2 h’b
. -V, - (1 +) —L==)
= - (i) P-EA
+ (2o § v, 8 - v, B+ BB, (87)

contains the non-linear terms, the deviation of the lateral friction term
from the simple expression (48), a modified bottom stress which is assumed to
be propartional to the surface stress, and all correction terms comnected with
superimposed wind-waves snd those discussed in 5.1.

It is possible to derive a wave equation for n+H from (85), (86) provided
that the coefficients on the left hand side of (86) are constant. Taking the
horizontal divergence and the vertical component of the vorticity of the
volume transport vector one obtains



39

-v - @)

(g? ta - "nVE)k 'thsh +EV, Sh --k- thﬂ: | | (59)

(g.—b- + a - KhVE) Vh . Sh - fk 'thsh

Applying the operator (g? +a - !SIV i) on (88) and introducing- (89) to-
gether with (85) leads to a wave equation for n+H, namely

2 =
Grva-ned 2] M. & o Fakeval

2 ==
+I(g€+a-xhvi) v £ Eg—E—. (99)

The wave equations of all simplified models can be derived from this
equation by specifying the vector _ZE'h. The simplest possible specification is

the linearization and the neglect of all complicated terms i: e.,

I - - a9, i) 4 agle) (52)
where the assumption
(T, ), - 0uS, ¢ T

for the bottom stress has been used.

The principal value of the wave equation (90) is its application to the

linearized case where the term Vh . l : =h I can be neglected. In the more
n+H

general non-linear problems the separation of variables is a much more compli-

cated problem and cannot be carried out in general and therefore no simple

wvave equation can be expected. However, the number of equations can be re-

duced by introducing two scalar functions instead of the components of the

volume transport vector defined by

o
Sh .—.-Vh 5%— + kxvh;b (93)
Writing
o553
t TP

introduces the local change with time of the water elevation due to the pre-
cipitation minus evaporation effect, and the equation of continuity (85) is
fulfilled if we set

WE = - v+ 7EE) (9h)

Introduction of (93) and (9%) into (57), (58) or (85), (86) leaves one
vectorial equation for the unknown scalar functions X and "0.
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5.4 Wave equation for the non-homogeneous ocean derived from the general mass
transport equation

A wave equation similar to (90) can be derived for the mass transport in
an inhomogeneous ocean in a manner analogous to the derivation of (90) by
separation of the lateral friction approximation (48) and by introduction of
the expression

(*)

=~ - =(a)
(mz,h)b = Q.Mh + nmz,h (92')
A
where the horizontal mass transport vector E\Vh is denoted bth.

Writing (41), (55) in the form

-v, ‘M, - g% - (3-8 (85')
M. (% , *
~—+aM,- Khvi ot thaM, = 'ﬁ:% (861)

(*)

wtere here the "force" ]]-'Vh is given by the expression

(%) M . _ _ 7
=% { __%l\ih} -@v, (™) - G v, 5%, -k VEM,

=_ F° - A = )
+ (l-n)’-ﬁi(zfl)l- s'EVh(B—a— - £ [(ﬁ+H)2+ (q'e)lvhpugvh ?Hdz i Y dg)

AT AL A NG CE N ACE DI ACEE)

AR (i_n(::l)a" ]ﬁ?r)x) - Vil li(ix,h)b * j(fy,h)b}

v

+ '&:Ei VH- Vhs(i)+ (-I;'E)Gh,s (87')

the “wave" equation similar to (90) follows by comparison of (86) and (86') in
the form
(*)

, (%) 3 (%) (%)

|G+ o - nvD% R - Gov e - RIDT, Fo vk Ul
3 " o '

(*j B I(%E + a - Kthal)a . £ (P-E) (50*)

where o and f are assumed to be constant.

.. .This:is a wave equation for the massQ of a vertical columm of water in
which the highest ‘time derivative appears on the left side. But on the right
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side, there are still time derivatives, derivatives of -Q-, ?] s and of all the
other terms which cannot be determined separately in this treatment.

The evaluation of the divergence and the vorticity of the "force" vector
(*)
IEVh on the right side of equation (90') is a matter of simple differentiations
and will not be given explicitly in this paper. However, it can be seen from
(90*) that these approximations lead to the different equations which are used
in connection with the vertically integrated equations. For example, neglect-

ing the derivative g% of the mass of a vertical column with time in the equa-

tion of continuity and introducing a mass transport stream function, allows

us- in the derivation of (90') to incorporate the Rossby-parameter /3 (i.e.,

one can take into account variation of f with latitude). Then the equations

of Welander [39] are obtained by dropping the left hand side of (90'), neg- -
¥*

lecting several terms in n’ and using instead of the bottom stress assump-
tion (92') the expression
T = - D - 5 = .:!'_ "
(’l]jz,h).D Dth P, kahpb] (with D = 57 times Ekman depth) (92")

* .
and putting (a) equal to zero in this case.

Whether the resulting equations which exclude “"certain™ types of waves
due to the assumption BQ/bt = 0 should be used for storm surge calculations
is uncertain.

5.5 Introduction of bathystrophic coordinates

551 Definition of bathystrophic coordinates

We define a bathystrophic coordinate system g-» as follows: The first
family of coordinate lines is given by the lines of equal depth, the o-lines.
The second family of coordinate lines is arbitrary, but we choose here the
Y =1lines which are orthogonal to the o¢-lines.

Given the lines of equal depth -H = const. in the horizontal plane, a
system of unit vectors @& - ) which are orthogonal, with the relationships

W -d = O,)l)2 =62 = 1, can be defined by
Vi(-E) 1

T T T >
o 1
o -k * T7.F] (kxv,n) (96)

Therefore @ is the tangential vector of the lines -H = const. s the
o-lines, and directed so that it has decreasing depth on the left hand side.
The vectorv is the normal vector of the o-lines and the tangential vector
of the ) -lines and is pointed toward decreasing depth. (See fig. 2.)
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The orthogonals to the g-lines can
be found from the differemtial equation

aSxw-0 e Z-FT H (o)

where dS is a line element of the or-
thogonals. The solution y=y(x,C) rep-
resents the family of V-lines in the
plane.

In this orthogonal coordinate sys-
tem each vector can be written

A - FA +DA (98)

or, for the nabla
w9 d

Figure 2, - Definition of bathystro-
phic cocordinates. The unit vectors @ and W change
their direction from point to point in
the plane and are therefore dependent on the position vector. For example we
get for the horizontal divergence of these vectors using (95), (96)

1 )
vh.d=-w k°vthvh(lvhH')=§g =1 (100)
. 1 . v ———JL-— 2 = - aa— - -]:--
vh V- -l__ VhHI2vhH h(lvhHI) - 'VhHI (vhH) - g R (101)

where the radii of curvature of the coordinate lines are Ro and R)) respective-

ly and are defined by the rate of change of the angle o if one follows a
.o-line or ad-line in the direction of their unit vectors. These radii of
curvature which play an important role in the following equations can be cal-
culated from (100), (101) by means of simple differentiations of the bottom
me ile.

The following additional formulee for partial differentiations of the
unit vectors are usaful: '

Y ‘1 v 1 ’
d’.vlfd"&?’h-a)’)‘ @ h’v’“Rc@‘ _
) B@' 1 . i (102)

5.52 Transformation of the basic equations to bathystrophic coordinates
The basic equations of motion and continuity (55) and (41) can be trans-
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formed to bathystrophic coordinates by using the rules for differentiation of
the unit vectors, i.e., (100), (101) and (102).

One gets for the equation of continuity (L41)
Q
t

r @l ) (@TV TV
EAA g RV, +w ey,

A A

= 3qLr X/ _A A - =
_oQ g Yy = =7 L) =T
Sttt Y, T+ TV W= RE

or A A - A __.A

sg XV, XYy V. I, -

S’E + ao + SV + Rv - R = P=E, ( ]‘-03)
o .

Scalarly multiplying the equation of motion (55) by @ and .22} and intro-
ducing (98), (99), one gets for the acceleration term the two components

—
-

aﬁ{] A A _A
A AR
S o (]
s W [QXV;} W+ RV, (104)

Using further the expressions for the components of the divergence of
the dyadic product of two vectors A and B

A B J0A.B AB-AB AB + A
. Y, A D70 . g0 _JY_ oy ;/Bo
v, * (AB) - 0 - S T3y ¢ R R
OA B dA |B AB-AB AB,+ ,
. __oJd y©y) oo JI, oy ] (105)
T, (BB W T I M

in the acceleration components (104) and taking the o- and )/ -components of
the friction term on the left side and of the terms on the right side of
equation (55), one obtains the following system

(1) Equation of comtinuity: A A

g

St Sty t R, 7= = P-E (203)
(2) Components of the equations of motion:
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a’iﬂ} ey A A _
w5+ & @V + 5 @G 5 42D - 2,0 2
0-

o5, o
-9 E)0- &% ) - G B4 AR on (T, ), 0

Z
Zy 72 ==]s3 > i_*
pg-(ﬂe—-) -g (R (7 )]—y‘;- gg;( dzg o a;)
-H z
= == = 2
- hﬁ“(im',(fﬁ +j'm'§,?1)1) * @-g(n+H) %;; (p'0') -g %g (5 2)
- B -V GES T - O-vE e AT, ), T,
i) == '
- ég‘;— * '(ﬁ-ﬁ)eh,s '@ - Fy (106)
_/\
K]V, A

- -,(a) R . —
- W - (m‘ ) P - %E (T )y IT, )+ Y

ébqlv H' + BBV, , -))) = E, (207)

where the deviation of the bottom pressure from the hydrostatically calculated
one enters only in the )»-component.
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J«33 Bathystrophic motions

, The purpose of transformations of the hydrodynamical equations is to find
forms of these equations which are suitable for the treatment of special -
pPhysical problems. For example, in transformations to fulfill given boundary
conditions, one tries to make the boundary surface (or line) a coordinate sur-
face (or line). This is exactly the case if one uses the bathystrophic coor-
dinates where the coast line is a coordinate line, a ¢-line, for which undér
normal equilibrium conditions the water transport normal to this line vanishes.
But besides this, the dependence of the terms on the right side of equations
(106) and (107) on the coordinates g and Y is a quite different one. For ex-
ample, the component of the wave set-up term in the direction normal to the
isobaths is certainly much greater than in the tangential direction. Further s
as already mentioned, the non-hydrostatic bottom pressure deviation vanishes
in one component only in this bathystrophic system. For many a.pplicaf.tions‘
also the density gradient has the direction normal to the isobaths and there-
fore the component of the density gradient tangential to the isobaths in (104)
can be neglected. There are many properties of the sea depending mainly on
the distance from the coast; i.e. » depending mainly on » and not on g. For
this reason the equations written with respect to bathystrophic coordinates
may be useful with respect to reasonable approximations.

One of these approximations is the assumption of a bathystrophic motion
"in the mean" which means that the component of the vertically and time aver-
aged mass transport normal to the contour lines ¢ = const vanishes. There
certainly can be a mass transport toward the coast in the upper layers but
there must be present also a lower counter-current for compensation. If there
were a sustained mass transport toward the shore across the isobaths in the
vicinity of the coast » much larger land areas would be inundated than is us-
ually the case. In our notations the bathystrophic approximation, which was
used successfully by Freeman, Baer, and Jung [12], means

A A
V.= Ves Vj=o (108)
By introducing the mass transport vector
A A
M, - AV, 5 M =TV (109)

the bathystrophic approximated equations are obtained from (203), (106) and
(107) in the following form

A
M
M +:_—0—=F)) (111)
° ®
g

where the abridged right band sides of equations (106) and (107) have been
used. This much simplified system with known radii of curvature is the basic
system for the calculation of the so called bathystrophic' storm tide [12].
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The bathystrophic mass transport Mo follows from (111) immediately if the
component of the "force" ]f; in the direction ) is known:

1~ 1/ IE,
M =-Zf@R {1+./1+ (112)
o 2 "o £20R

. o
or A ¥ :
1l -
Vo= -3 {1xq/1e 22 ] (113)
TR

The analogy to the geostrophic-cyclostrophic wind in meteorology is ob-
vious; however, here the two signs of the square root together with the two
possible signs of the radius of curvature lead to four possible solutions.

Since 5 is always greater than zero » the sign and magnitude of .E, and
Rc determine the direction and the magnitude of the bathystrophic mean volume
(or mass) transport vector.

For "eyclonicly" curved isobaths, i.e. R Ro > 0, the two solutions of
(113) are

7le) | -1’39--’14- 1+ 8! '1' (12k)
“970’1 -T2 R
g .
A R [ F
(c) = - _g l - 1+ )} s
Va,a 2 ] . f2aR (15)
g
F £R
2 > .0 (116)
£q |

with the limit value
’ A A fR
(e) ~xrle) _ o
o1=Vgo=- 7 (17

for the equal sign in (116). This means an *anticyclonic" current in this
"eyclonicly" curved family of isobaths for both solutions.

The case of straiQt isogaths is obtained from (111) and given by
A F :
wvr(s) - __%é (118)
0 £ Q |
For "anticyclonicly” curved iscbaths, i.e., R <0, the solutions are
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Cr(ac)_ IR | "y
Voa=—2-1t%/1- (129)
0,1 2 f2-Q-,ROI
f
A (ac)= fIRO" 1. 1. —FL (120)
0’,2 2. fe'Q‘,Rol B .
where
F) £IR |-
£
= = g (121)
FQ ,
with the limit for the case of ‘the equal sign
A A £[R | '
(ac)_~7(ac) _ "% :
Vei=Veo =5  (1e2)’
Introducing }he new variables X and Y defined by
ﬂ/; 4F,)
X = - Y = —— . (123)
f|R0| fac-z’R !

into (114), (115) and (119), (120), one gets for purposes of graphical repre-
sentation

Y

X (2 +X): for R_>0, i.e., cyclonicly curved isobaths (12h)

Y

X (2 -X): for R°< 0, i.e., énticycloniclycurved, isobaths  (125)

We shall call the dashed parts of the curves in fi‘gure 3% and the corres-
ponding dashed vectors in figure Ui anomalous solutions. These may be realized
for bathystrophic currents on the shelf of the continents \mder certain condi-
tions.

In the case of the geostrophic-cyclostrophic wind in meteorology the
"foree™ Fy corresponds to the pressure gradient pointing toward lower pressure

and therefore in the atmosphere F ~ - ﬁ > 0 and only the upper part of

figure 5 is valid for atmospheric motions. Then the dashed part of the curve
for anticyclonic curvature is the anomalous solution for anticyclonic atmos-
pheric motions. According to Alaka [1,2] this plays a role in hurricane
dynamics, THe dashed part of the curve for cyclonic curvature in the upper
part of figure 3 corresponds to the antibaric anticyclonic motion in the
atmosphere (Holimboe et al. [18]).

In the present case of oceanographic bathystrophic motions the sign of
the "force" component Fy) normal to the isobaths cannot be determined in such
an easy way as 1s done in connection with the geostrophic-cyclostrophic wind
for a frictionless atmosphere but this sign is determined by the sum of all
terms on the right hand side of equation (107). Therefore even the negative
sign for F}) may appear and consequently more kinds of bathystrophic motions
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|
|

thystrophic-

Figure 3. - Representation of the different solutions of the ba
current equation (111).
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Figure L. - Possible directions of the bathystrophic current for given type
of curvature of the isobaths and given direction of "force."

are possible in the vicinity of the coast than are realized in the atmosphere
for the simple model of the geostrophic-cyclostrophic wind,

In the case of cyclonic curvature of the isobaths, R0 > 0, ve have ac-
A
cording to figures 3 and 4 for Fy > 0 the normal cyclonic current V gc; and
A ?

the anomalous anticyclonic current 'Vg.c) « For F, < 0 we have only anticy-
2

clonic currents, a smaller normel solution » and a larger anomalous solution
which, however, are bounded with the limit value (117).

In the case of anticyclonic curvature of the isobaths and for Fyp > 0 the
possible currents are anticyclonic and we have a smaller normal end a larger
anomalous solution. These are bounded with the limit value given by (122§,
For F,) <O we have a smaller cyclonic current and s larger anticyclonic cur-
rent.

The simplest expression for Fy is obtained from (107) by neglecting all
but one term; i.e.,

43

Fy=-g@

Therefore for g% >0, F,y, <0, the currents have the coast on the right

hand side (exceptzthe anomalous current for enticyclonic curvature of the
isobaths). For g;} < 0, F,,>0, the currents have the coast on the left hand

side (except the anomalous curremt for cyclonic curvature of the isobaths).

When, however, all "forces" on the right hand side of (107) are present,
such simple statements cannot be made, but the inequalities (116), (121)
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for given curvatures of the isobaths remain valid and can be used for the cal-
culation of limits for the so called "set-up" in cases in which the curvature
of the isobaths plays a significant role. If, however, any information about
the direction and the magnitude of the bathystrophic current is available,
even under hurricane conditions, the complete bathystrophic-current equation
(111) can be used for an estimation of the set-up. If this is not the case,
the cuwplete system of equations for the bathystrophic mass transport, i.e.,
(110), (111) and (103') must be used in order to eliminate the bathystrophic
mass transport and to obtain equations for the remaining variables. This was
done, in simplified form by Freeman et al.[12]. The general non-linear problem,
however, is a very complicated one, even if the bathystrophic mass transport
can be eliminated with the aid of ('112).

5.54% Elimination of the bathystrophic mass transport from the complete
bathystrophic system of equations and the bathystrophic wave
equation .

The equation (111) for the bathystrophic mass transport allows the
elimination of M from the system (110), (111), and (103*') and the deriva-

tion of a wave equation for the mass of a vertical column even in the quite
general non-linear case described by these equations.

Writing (111) in the form
s
mnmcam— = - +
f ROMG RF, (126)

and introducing this into (110) gives

:amd ano aMG M JF ) Fy ‘ BRG
st o tR () R *q)+Fomag B (12D

with the divergence of the bathystrophic mass transport on the right hand

‘. side. This can be expressed by means of the equation of continuity (103')
leading to ‘ .

2 %R 30 (33 % 5 By
S5 - f&—) M= -fR_ (5 - (P-E)) - R_ (é'o'*@) + (F_ -5;—13)) (128)

Applying the divergence-operation g-; + %—;) on (128) gives

a : aRq aMo_ Mc aeRo a aRO’ aa ' - - BERG
CRER (e oS vk ien LUt AR TR A

o _ - .
) 1 Py == 1‘;) N
g |, @ D) n, D Y
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2
9 R

From this it follows that if - :t: 0, a second expression for the bathystro-
do

phic mass transport besides (112) is given by

oR = =
M, = -3 [<3- ¢ 93 - 7))

£ T“ .
d¢

OF, F OR
+(g;+-;’;),fR(—9-(P-E))-R ( +§%)+(F0-5;2F3))']
(129)

This expression for the bathystrophic mass transport contains all "force"
components, the configuration of the isobaths, and the change of the mass of
a vertical column with time.

The stationary bathystrophic mass transport for curved isobaths follows
from (128) as
OF) & OR_
M_ T{fR(P—E) R, (53~ +—-)+(F ‘BTF))) (130)
* 3
and the limit case of straight isobaths is described by
_ 1
M= FEH (131)

In these expressions for the bathystrophic mass transport the equation
of continuity has been used which makes these expressions more general than
is equation (112). For example, the following derivation of a wave equation
is possible only by using (129) and ean hardly be done with the use of (112).

oR
Applying the operator g%- -f 333 on (129) and introducing (128) gives

the following "wave" equation
2
oR oR dR 3°R = _
[(%; 0%t G- IR (Ge+ R ¢ 55D - £R, a—g‘l] (& - (7))
o

3 3R 3°R
-[(at- fa——)(rat— ) +f?](F- F) - R (5—— )) (132)
or a
F, F -
D t = - D, (F - F)} - R (5-2 ’:, )) +D (P-E) (133)

where.
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2 2 OR_ R oR oR_R JR
_ o ) 2 @ gy O 2 g 9 270 ¢ 2 2
Dl_atE'fRoBtaa-f(’ao-"ﬁj)ﬁ".fROg‘rb—O*.f B-E--R—J)-‘.ef (332)
N 3%R
- J L)
fRo'_-é- (13
do
32 1 aRoa 52R0 1 BRU

The corresponding equation for the steady state follows from (132) in
the form

32R oR oR oF F
d 1 Yy 9
&% 5z 59 (5, - 52 - Bl + 1))
3R %R R ==
= -f(Ro(g—O' + %;, ) +2 532 - R Tag/ﬁg)(P'E) (136)

This equation seems to have more physical meaning than (132) for the assump-
tion (108) of purebathystrophic motion means that streamlines and trajectories
of the mean motion coincide with the isobaths and therefore the whole motion
has to be steady state. Only in the case of a bathystrophic approximation,
where v;/ is considered to be small compared with other terms in the system

of equations, the wave equation (132) is valuable as an approximate equation
for motion which does not follow the isobaths exactly.

The steady state set-up in the case of curved isobaths disregarding the
precipitation minus evaporation effect can be calculated from (136) by putting
the right side equal to zero. The result is a second order partial differ-
ential equation in the variables o and). This follows after introduction of

. the right hand sides of equations (106) and (107) into (136).

' In the open sea the mean motion certainly is not bathystrophic and there-
fore the complete equations (103), (106), (107) have to be used, i.e.,

§+(§;+%)Mo+(§-;, -3 My=FE (103')
c
oM M M M M2
) ) 1 )Mo')) 0’)’_ ) -fM),=F0'- (106*)

°+( +!’—-)—2—+( - — -
3 0 Ry g Y R, '3 ERU QRJ

My & g MMy 5y Mf, MM, e »
P () IX, (o) 2+ 2y Z £ M =T (107*)

where, however, the component M,)decreases towards the coast and vanishes at
the coast itself under certain conditions. ®
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5.55 Separation of a basic current in bathystrophic coordinates in the
case of a homogeneous ocean

For the sake of completeness we add to this chapter the tra.nsformation
of the equations for a homogeneous ocean ffom which a basic current has been
subtracted, i.e., the two systems (69), (70) and (T77), (78). This trans-
formation can be done easily with the aid of the properties given in 5.51
leading almost immediately to the equations for the pure storm surge pro-
perties in bathystrophic coordinates:

111?_(:+ ( (n(°)+H)V( ) (*)'\Zlﬂgp l(‘(°)+H)V( *) “(*)V
_EE
)
A A
a‘V(*) A a“V(*) A a-v(*) a a—V() Ay W‘(O)
= * V5 Y57 *Vf,*) %*Vv( )WU' (69')

A A A A A
VV(*)+V(*)'V(°)) (%%(*);V;(*)WO)) )

)(,*) P;Ev 5— ("(*) -(a,)) + (@ ~component of
the additmnal terms on the right hand sid.e of (70).

av( N I O a-v'(o
Ny N, Ny e T 0 T

R AR R U OIS VV‘*’V‘ Ve« (o0
g

+ f'v(*) +%"E { = - 5-9 ('q(*) —(a)) +)l’ -component of

'.:U’!—‘

the additional terms on the right hand side of (70).

The second set of equations follows from (T7), (78) in abridged form:
27, 2 (9, @ .1, EE
T+ (5 +—)s (5- )s ==
(71*)

(*)
a - - =
i I I I 0 £ & - o) & GO L),
@' ~component of further terms
5(*)
'Eti + Ve l} ey st SE’*)= —e(7+H) 7 (%) ey g-—(*) ’;r(ﬁ(o) (T))+

+ ) -component of further terms, where the divergence terms on the left sides
can be written explicitly with the aid of (105).
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5.6 Time dependent coordinates

5.61 Natural eoordinates

The reason for writing the basic equations (41) and (55) in this special
form by introducing the variables Q a.nd\rh vas to get equations analogous to

the equations of two-dimensional gas dynamics, However » this leaves quite
general forces on the right hand side of (55). This allows us to apply some
standard techniques of transformation to general time-dependent coordinates
and to derive some general theorems connected Xith the vorticity or the di-

vergence of the mean volume transport vector Vl.

The introduction of so-called natural coordinates can be made analogous
to the introduction of the bathystrophic coordinates. Writing the equations
(41), (55) in abridged form for the mass transport vector

Q . == '
5€+vh.Mh-P'E (b1r)

%1;4_h+vh.{_¥§£4_hl+kaMh=lf;. (55')

where the force ﬂ:l: includes the lateral friction term. The natural coordi-

nates are defined by the tangential vector S of a trajectory of the mean
mass transport i.e.

Mh = SM (137)

and the normal vector to the trajectories which is in the two-dimensional
case also the normal vector to the streamlines.

n-kxs (138)

Therefore streamlines and trajectories have the same tangential and normal
vectors.

We call the streamlines the "s-lines" and the orthogonals of this
system of lines the "n-lines." Then for each fixed moment the following re-
lationships analogous to (100), (101) and (102) are derived in texts of
differential geometry: .

V, 'S =% i Vyem--L1 (139)
n S
: M 1
S S
38 1 I (140)
BV "o "m R n-VD =T =-g8
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where the curvatures of the streamlines and their orthogonals are unknown
functions of position and time in contrast to the case of bathystrophic ’

coordinates.

Introducing the representation of any vector A and the nabla in natural

coordinates i.e.

A = SAs -l-‘I].An 3

into (41') and (55') together with.(157) one obtains

3Q
g,E"' Vh'|SM
SB—-I-Mg-S—-PVh

oM 38 9

v, - 8&+ n& EIEY
’l-:—SSl+an :
g
M ¥l .1
- S+-E-(§;S+-§;n)+an=SFS+ nr_

=S§—+Mr Y[—Q—

Introducing the curvature -i‘— of the trajectory according to Blaton's

S

(1k2)

(143)

(1sk)

(145)

[3] equation
1 1 1 oS
—_—= =t - n-
rs RS V &—
vwe get the basic system in natural coordinates by taking the components of
the preceding equations
oM , 9 M . i .
3t T35 | = - T s ?
Q QR
M+ — M2 = Fn s
Q
aq M. M _ 33
TS W

In steady state is rs =

3 | 8]
5'5,[_] QR Ts

s

Q

Rs and the system becomes

£M + =F,

Y
+

=
]
*.r.lli
=t

(146)
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Comparing (143), (144), (145) with (110), (111), (103') one can see that
these systems are identical with the exception, that the curvatures of the
isobaths have to be replaced by the corresponding curvatures of the stream-
lines and the trajectories and, further, that the system of unit vectors §
and Il is always orientated here in such g way that the tangential vector is
the wnit vector pointing in the direction of mass transport. However y &8
already mentioned, one essential difference exists between these two systems,
in the bathystrophic system due to the assumption (108) of bathystrophic
motion the curvatures Ra and R ) are known functions of position and can be

calculated easily from the definitions (100) and (101). This is not the case .
for natural coordinates where the curvatures ry and R , can be obtained only

by solving the whole system. Nevertheless, the equations (128) s (129) and
the wave equation have their formal counterparts in the following exact
equations:

or OF F or
M. ¢ s2 M=o (SY, %‘;) - r (52 + EE) +(F- 52 F) (147)
or
or . S OF F or
%‘f -f -5§ M= - frs(érs - (P-E))- rs(~§;-' + §§) + (F - : F) (148)
1 or, = -
Y— [(S; PR )
o°r 1 oR
F 5 _ n
3s° Ri ot
= o - OF F or
+ (gg + %':-) , - frs(?rs - (P-E))- rs(Tz + ﬁz-) + (Fs - 1% Fn)’] (149)

or dr or 821-
> 2 3 3 .1 3 (1.,
[(é‘t -t - a(5p -t =) (r(55 + Rn) t3g) - fr(e a"sé"s T3 (Rn))

' 621- or or - -
% (e =+ S <%n»)<§;, -t er(r (S £ 33-»] (2 -(F5))

dr 3% %
) 3 .1 o (1 3 d (1,0 1
=- [(a% e it B+ (e 583 + SR Sltale g;-zf*' SR )5 ﬁr{]

. or bFn F
(o - 5, - R 7)) (250)

The differential operators in equation (150) are not interchangeable,
for the curvatures here are also functions of time.
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The steady state equations are obtained from these equations in the form

1 5 = aFn Fn aRS
M = - -—FIT;— ‘ fRs(P‘E) - RS ( FS_ + 'R—n- ) + (FS - 'E Fn) (151)
f 5

5 1 R %, Jm
=-f(Rs(s+§;)+2—5—s—-Rs-a;—2- 3;-)(P-E). (1’52)

5.62 Coordinates fixed in the center of the moving hurricane

For some purposes it is convenient to transform the basic equations (41),
(55) to a coordinate system which is fixed in the center of the moving hurri-
cane. For example, in this system some of the acting forces can be considered
almost independent of time; e.g., the atmospheric pressure field and also the
field of the wind stresses on the surface of the sea. By this transformation
the problem becomes a steady state one if the bottom of the sea is flat and
the boundaries are sufficiently distant from the hurricane center, and if
further, no horizontal density gradients and no basic current exist in the
free ocean. If, however, the bottom is not flat in the moving system, the
bottom topography becomes a function of time even if the bottom is at rest
with respect to the earth. The coast line (in this moving coordinate system)
is moving toward the hurricane, if the hurricane is approaching the coast.,

We consider a moving rigid coordinate system x', y*' fixed in the center of
the hurricane which rotates about the axis of the hurricane with angular ve-
locity Q‘a.nd which has also the translation velocity of the center C 5 Then a

point P of the moving system has the velocity C relative to the earth

C - Cg+ Q kxx (153)

In terms of a coordinate trans-
formation we can also write

R-Rgt) +§(1)r

X = xg(t) + axx(t)x"*' a'xy(t) y'

*I

y = yg(t) + ayx(t)X'+ ayy(%) y (154)

where
Figure 5. - Resting and moving frames.
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@ - (,.7) mam ®-Q4Gi-i
yx vy :

is an orthogonal tensor describing the rotation of the x! s Y'-system about
the center of the hurricane.

Therefore the bottom topography becomes time dependent H(x »¥) = H(x',y*,

t) and further for a fixed point in the relative system the depth of the
water below still water changes with time according to

L -C.v. = (155) -

In order to transform the system (41), (55) to the moving system we

V, i.e.

write (41') and (55') in terms of the mean velocity h

23 A

-V -%E )

E |
B (55")
3

A g‘hR

and write further for the mean velocity Vh = —3%

The transformations of the velocity and the acceleration are well-known
(Truesdell and Toupin [34]) and are given for our present purposes by

(156)

A A A '
Vh =v}(1rel)+ C____vt(lrel).‘_ Cg + .Q. (er)

dt

Ay Alrel)r(rel) A . .
dgylz _a )Vl(l + 2 (kaVirel)) Cg + Qkxr) - QPr

:A : . :
a(rel)v-(rel) A A A,

- h +'v£rel). Vylgrel) + 2.Q(kx ﬁrel))

+Co +Qkxn) -Q°r (57

where the dot means time derivation of functions which are only dependent' on

timeasCs'and'Q.
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~ Considering all quantities in (41") 'and (55") as functions of x' and y',
where the nabla appearing inE represents a nabla with derivatives with re-

spect to the primed variables, the transformation is performed if one iﬁtro-
duces (156) and (157) into (41") and (55"), observing that

A= Alrel)= A '
@ 4 e . WH(rel) | A
it at 5 Vi Van Vh g vh',C=
One gets ) \-
A(rel)=
QT _ A - |
e-tlth—_ + Q vh c'v](nrel) = P-E v . (158)

( rel)‘@'( rel) A == A \

-[ég tkxCg+ %E Cg+ Q %-.E-kaxr)-Q@ 0T ]

or, in terms of the relative mass transport vector M 1(1 rel)

1l)= ——
éf;:—.)-g_. + Vh . Mgrel) = P-E (160)
(rel)y g (rel) (rei) (rel)
3'relM M M
e N - i PR PSVESR

- aléga-kacgﬁ—;-ﬁcr (ijgﬂer)-ﬂ(ﬁmr I (161)

This system differs from the original ome (41'), (55') only by a modified
Coriolis parameter and an additional force on the right side of (161l) result-
ing from the acceleration and the velocity of the moving frame. Heré, however,
the apparent depth H of the bottom below still water level necessarily must

be considered as a function of time and therefore it was convenient to carry
out the whole calculations with time dependent H from the very beginning of
these considerations. However this fact of a time dependent bottom may be
more disadvantageous than having a time dependent atmospheric field of pres-
sure and wind stress in the basic equations with respect to fixed coordinates.

6. FURTHER GENERAL EQUATIONS
The following considerations deal with some general equations which can’

be derived from the basic vertically integrated equations in analogy to some
standard techniques used in meteorology. These special techniques can be
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applied immediately to the vertica.u% integrated equations in the form (h1m) »
(55") for the mean velocity vector ’-Wk:’ which differ from the corresponding
equations for two-dimensional atmospheric motions only on the right hand

sides which have a quite different physical meaning here than in the case in
atmospheric dynamics.

"Such derived new equations are mainly the vorticity, divergence, and
energy equations. These are used widely instead of the so-called "primitive"
equations which are here given by (41"), (55"). These equations can also be
derived, however, from the equations for the mass transport, but then the
analogy to the equations for compressible fluids vanishes.

The right hand vector E;/ Q in (41") can be expressed always as the
gradients of two scalar functions ¢D and ¢R’ i.e.

134
__Q_E_ =- Y, #y-kxv g (162)

where the vorticity and the divergence of this vector are given by

H:: 2 . IE: -
kv ox(=2)-.v3g; v (= )=- V. #.  (163)
Q Q
Here the acceleration potential ¢D is given by g1 in the simplest case
in which one neglects in (55) all but the first term on the right side. . In
the more general case, however, the expression (162) has more the meaning of

an sbbreviation for the complex right side of (55) and the decomposition into
two parts given by (162) is not possible in this case.

6.1 Vorticity equation

Writing the equation (41") in the following well-known local form

(Serrin [27])
Val

¢ BE Vi
'F'Vh"(vh’.‘m+fk)+“%‘ h"“vh(%*"é")'kxvh?’a)(h, )
1"

applying the curl-operation, and introducing the relative and absolute vor-
ticity by '

A A .
' E-k-v,xV,, T -%+¢ (264)

one gets the vorticity equation in the following différent forms:
A

A == A
e (W BVk]vie s

ey o i a ey eat o e
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AN
d'h‘;a. A ‘“A]" P-E 2
T + ca vh . h -l-k . th Vh = -Vh ¢R (166)

or, after introduction of the equation of continuity

h’ d .5 3 - (167)

one obtains
A A A
g

4 Sa, % BE, 1 B-E JLg2
5 ____)+:.5:(___)+-_—k-V V‘ = ¢ (168)
® 3 3 3 @ b 3 n'e ,
From equation (168), in the case %—ﬁ = 0, the simple vorticity equation
3 %
1 2
R(__Z_)ha-vh% (169)

follows. This shows that only in the case VI21¢R = 0, i.e. the case in which

only curl-free terms on the right side of (55) appear, a comservation law in
the form

A\ N\
ca.
- (.Q ) =0 . (170)

exists (Charney [4], Morgan [20]). This is not the case however, in such
complicated force fields as in the hurricane.

This can be seen by looking at the right side of equation (55) to which
the lateral friction term on the left side is added in order to get
IE;- Dividing by Q and taking the curl in general only the curl of the term

-g Vh( '-ﬁ-'q,('m) vanishes and therefore all other terms are acting as sources or
sinks of the vorticity of the mean velocity vector h°
Some of the more essential parts of -Vi ¢R are given by
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'l—‘

2
- vh¢R = k~ th

|
ro

5 =
Q

k.v5 x5, = k. vhx[‘z‘rg‘;‘g-(ﬁz,h)b]

ol

|

Xl.v Vog':) —£& _k.vGmxv(L
i A W ke v G v 1)

- ;— k-9, x (T 1+ T4y v 140, (17)

-

vhere the dots denote further terms containing the density variations p' and
further terms which can be considered to be small.

An approximation found frequently in the literature is given by

~ Z,h

-VE g, = kthx-a—he&i— kv, x T - (ﬁz,h)bl +%"k'vhx(v'91:1)

r - -

-ER-V (m) xV, 1np (172)

which, however, appears mostly in connection with the vorticity equation for
the mass transport vorticity k . Vh x Mh together with different assump-
tions regarding the vortieity of the lateral friction term.

1

P

) xVhf)(a) and also

Neglecting all but one term in (1T1), i.e. - Vi (

the term containing P-E in (166) the equation
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has its analogy in the well-known vorticity equation for two-dimensional

= A .
atmospheric motions where'-( ), p, and § have to be identified with the atmos-

pheric pressure, density, and vorticity respectively. The case of "baro-

tropic” flow (constant atmospheric pressure at the surface of the ocean or

constant mean density's'of the ocean ) leads to the barotropic vorticity
equation in the simple case considered above and in the general case the
first term in (171) drops out.

4

As already mentioned, the vorticity equation for the vorticity of the
mass transport vector IM[ cannot be expected to have such analogies to two-
dimensional atmospheric motions in this simple manner because in atmospheric
dynamics no vorticity equation for linear momentum has been studied systema-
tically.

In order to get a vorticity equation for the vorticity of the mass trans-
port vector, i.e.

A A
k-v,xM, -k-v, 3V - +k -v,axV, (178)

we write the basic equations (55') for the mass transport vector IM[ in the
form

Mo M| kM, - E

and introduce the identity

lVM] zka+<v V)M «~v<"1V2 },_:h_ 3 ()

leading to

d r ; A V2 =
%'It_h r2kaV e (9, V) M, + tkaM, - ﬂ:; -Vh(gvi) LA

A

Applying the curl operation one gets
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A A
LV, V2 + Y, V) + 2V, My M, v,e + K -9,09 WM,

Lo

V. _
=k'VhXEZ-k'Vh (-—;—)xVhQ. (176)
The approximate form
M, v -k 9, m)

has been used in several investigations in oceanography together with special
assumptions on the structure of the force IF; (Sverdrup [32]).

The curl of IEZ is given here by the curl of the right side of (55)

k-VxlE - - ek 9,8 9,(a™)- k- v, o) 9, 5

+k- Y, x,ﬁgfl)l'(ﬁ;z,h)b +k- Ve (Y- ?h)

(178)

= g (2° =2 S =
-ek Vo xV, (3) - Ek-V 1 Gem)® e 3F) 2V, B

k-9, x-[ ‘Wa'cfﬁ')it%(,i)i* v, W ]+ kv, Exvme ...

again neglecting small terms which, however, do not contain the following
terms

T 7 _— =
-th(S dzgs*dC); -Vhﬁ(i); -th (3'3@—)
’ -H z

o
which are curl-free and vanish, Therefore the deviations p of the density
from the vertical mean, the deviation of the vertical integrated pressure

e

from the hydrostaticly calculated one, and the term p! 7{'2 do not contribute
to the vqrticity- equation for the mass transport vorticity.

~In the c_a.se‘ of »a' homogeneous -océa.n ve get
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kv, xIF = - ok V@95 + gk- Y (7em) « 7, (D)

+k vhxlﬁg‘;‘g-(fz’h)b,»,k v x(V.F)

(179)
-k-v x[('[l;';{,:)i*ﬂ,"(a)]) th l+k v E— xV H+ ...
6.2 Divergence equation

explicitly as

A

+V°VV+kaV+P'E

With respect to the derivation of the divergence equation we write (55°

) :
- vh ¢
and apply the divergence operation leaxhng to

- kxv, ¢, (55")
3V, V)+V V(Y V)+VV vV-fg V (kxv, )+ v, (P‘EV)

_ 2
=-Vi¥
or, using the identity
A A
AR A

v, Vo227,V 0.0 1%

A A
; =§kﬁx}WZV|
where the absolute value of the deformation o@tensor is given by *\/ 25

dt(v V)+(v V) a V) ¢t '\V (kxV,£)+ 7, -(
A

FE 2 |

(—WV,)= -V

) n'D
A A ==_A 2
P-E 2 by
;—;—( V! &h) +B:0- L B’.h (kxV £) +V, (?&hﬁ - (V85 5

in atmospheric dynamics,

physical meaning.

The two forms of the divergence equation have, of course,

(180)

their analogy
where only the right hand side again has a different

Since ,,8 09 and { are always greater than zero the following inequality
can be derived from the second re
(Truesdell and Toupin [34]):

presentation of the divergence equation
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A
A — —

A 2 A == A
3 = (Vig e P +§% (v, * V) V. (kxv, )+ Vh’(-%ﬁ“v;) z -0:D

(181)

This inequality gives an upper and a lower limit for the expression within
the two inequality signs, essentially for the divergence of the negative ac-

Q
the other terms are sufficiently small.

celerations - al or, for the Laplacian of the acceleration potential ¢D’ irf

This apparently useful approximation is given by

2
142 2 f
st =vigr==-0:9 (182)

where, however, the limits are unknown functions. Therefore in contrast to
the conditions in atmospheric dynamics where the absolute vorticity and the
deformation can be obtained from wind observations, the divergence equation
in this form seems to have little value for practicel applications to storm
surge problens.

The divergence equation for mass transport, however, which has not been
used in an explicit form in order to derive the wave equation (90'), probably
has more importance than (180), mainly with respect to certain approximations.

Starting again with equation (55'), i.e.

%IZ_IE +Vy '{&th ] * kaMh = H

and applying the divergence operation one gets, using the identity

[VM I-f-_- 10y -——-+'V VUV MM,V <vh-‘§§)
' (9,9, M )+V (V,M,) v, ( (183)

the divergence equation for the divergence of the mass transport in the form
A

dh(v M )+108 D lz +M, -V, (9, V)+<v V)(V ‘M)

+V{;(thh)-vh(—%—) -z .M, (kzv,0) -V - F (185)

where th is the deformation tensor of the mass transport field I“[h'
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In a linear theory only the following divergence equation appears
% (VM) - 2 M, kxv,0) -V, T (185)

and therefore neglects all products of velocities or mass transports and
their derivatives.

The corresponding linearized vorticity equation follows from (176)

oZ

s+ oV, My + M9, e=kv, < (186)
This together with (185) and the equation of continuity (L' ) builds up a
system from which, in the case Vhf = 0, a wave equation can be derived by‘

eliminating the vorticity and the divergence. This leads to a simplified
form of (90'); this equation was derived in the same way from the vorticity °
and divergence equation.

There remains the calculation of the divergence of the force field IE; ‘
vhich is given by

Vh-]E; =

AV -V 3 [T, ), | 4909, T

- &9, 39, () -, (). v, 5

l

= o T2 - =3 =
g s:>V121 ( 32—')- g l (TI+H)2+ (ﬂ'e)] Vﬁ p - sVi dz

H

5"at)

(B ] |
n—— 1

= T2 = = = . . -
26V, + Uyl ) -a(FHE) () V, 5.5 - l( LA T A IR I

+EQVE B+, G v -v2 €Y 4 L, (287)

This follows from the right side of (55) together with the lateral friction
term from the left side and in which the remaining small terms have not been
written down explicitly.

It can be seen, that even in the case of a homogeneous ocean the iapla-
.".Té‘ :
cian of the variance (-12-—) and also of the non-hydrostatic part of the averaged
pressure enters the divergence equations (180) as well as the divergence
equation (184),
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If we can assume & curl-free mass transport, equation (185) (with V. f~0)

together with (187) for a homogeneous ocean with flat bottom and n<< H leads
to the well-known wave equation (with added surface wave effects)

2] . guv? (5@ = (a) Ve 1)
a—tvg giv ) + s 1T, (’ﬂfz )y {18V )
‘3 [ G B s R AR I (188)
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